III: Small: Collaborative Research: Social Media Based Analysis of Adverse Drug Events: User Modeling, Signal Reliability, and Signal Validation
III:小:协作研究:基于社交媒体的药物不良事件分析:用户建模、信号可靠性和信号验证
基本信息
- 批准号:1816005
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Adverse drug reactions (ADRs) have been associated with significant morbidity and mortality, and have been a significant cause of hospital admissions, accounting for as much as 5% of all admissions. About 2,000,000 serious ADRs are reported yearly in the US; 100,000 annual deaths are related to adverse drug events; serious ADRs rank 4th to 6th as causes of death. The problem stems from the fact that the ADR profile of a given drug is rarely complete at the time of official approval. The typically limited preapproval evaluation often results in the possibility that when the drug is finally approved for use in the general population (with significant diversity in race, gender, age, lifestyle), some previously unidentified ADRs are often observed. This problem is acute for psychotropic medications, given the fact that most people with psychiatric diseases tend to have other health issues, with the individual taking multiple drugs at the same time (both psychotropic and non-psychotropic), with often unknown interactions between them. Initial results have shown the promise of using social-media data for ADR signal detection. However, these methods are still faced with two critical challenges, namely, signal reliability and biological validation. Thus, this project proposes a detailed study on key determinants of signal reliability: credibility of social media sources, model of the users that generate source content, signal generation from such sources, and validation of the generated signals. This work will be relevant to government agencies charged with drug approval, drug monitoring, and disease monitoring, drug companies, hospitals, and the general public. The impact of the proposed work will go beyond drug surveillance, since the approaches proposed can be adapted for other healthcare problems, and for other scenarios, such as financial markets, and national security. Planned educational activities include outreach to high-school students, and involvement of undergraduate and graduate students. Research results will be disseminated via technical publications in professional journals and conference presentations. The project has three specific aims: (1) Enrich signal reliability in social media analysis of adverse drug events, using credibility analysis, user modeling and signal fusion via deep learning; (2) Signal validation via molecular level analysis; (3) Prototype development and evaluation. The ubiquity, veracity and diversity of data from various social media channels and other sources of user-generated content necessitate a serious consideration of their credibility, recency, uniqueness and salience. To enrich signal reliability, the team will propose novel methods for ADR signal detection using credibility analysis, and for user modeling and signal fusion based on deep leaning techniques. For signal validation, biological support for hypothesized ADRs, essentially connecting high-level observations from social media interactions to potential associations at molecular level networks and pathways, will be used. The results will change the current largely passive approach to post-marketing drug surveillance that relies heavily on voluntary reports, by ensuring reliability in social-media based approaches, thus making the public an integral part of a proactive drug surveillance system. The idea of signal fusion and deep learning for user modeling and signal generation can be extended for other uses beyond drug surveillance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
药物不良反应(ADR)与显著的发病率和死亡率相关,并且是住院的重要原因,占所有住院的5%。美国每年报告约2,000,000例严重ADR;每年有100,000例死亡与药物不良事件相关;严重ADR在死亡原因中排名第4至第6位。这个问题源于这样一个事实,即给定药物的ADR概况在正式批准时很少完整。通常有限的批准前评价通常导致当药物最终批准用于一般人群(种族、性别、年龄、生活方式具有显著差异)时,经常观察到一些先前未识别的ADR。这个问题对于精神药物来说很严重,因为大多数精神疾病患者往往有其他健康问题,同时服用多种药物(精神药物和非精神药物),它们之间的相互作用往往未知。初步结果表明,使用社交媒体数据进行ADR信号检测是有希望的。然而,这些方法仍然面临着两个关键的挑战,即信号的可靠性和生物学验证。因此,该项目提出了对信号可靠性的关键决定因素的详细研究:社交媒体来源的可信度,生成源内容的用户模型,从这些来源生成的信号,以及生成的信号的验证。这项工作将涉及负责药品审批、药品监测和疾病监测的政府机构、制药公司、医院和公众。拟议工作的影响将超越药物监测,因为拟议的方法可以适用于其他医疗保健问题以及其他情况,例如金融市场和国家安全。计划开展的教育活动包括向高中生进行宣传,并让本科生和研究生参与。研究结果将通过专业期刊上的技术出版物和会议报告传播。该项目有三个具体目标:(1)通过可信度分析、用户建模和深度学习的信号融合,丰富药物不良事件社交媒体分析中的信号可靠性;(2)通过分子水平分析进行信号验证;(3)原型开发和评估。来自各种社交媒体渠道和其他用户生成内容来源的数据普遍存在、准确性和多样性,因此必须认真考虑其可信度、时效性、独特性和显著性。为了丰富信号的可靠性,该团队将提出使用可信度分析进行ADR信号检测的新方法,以及基于深度学习技术的用户建模和信号融合方法。 对于信号验证,将使用假设ADR的生物学支持,基本上将社交媒体互动的高水平观察结果与分子水平网络和途径的潜在关联联系起来。研究结果将改变目前严重依赖自愿报告的上市后药物监测的被动方法,确保基于社交媒体的方法的可靠性,从而使公众成为积极主动的药物监测系统的组成部分。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
- DOI:
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Stanislav Pidhorskyi;Ranya Almohsen;D. Adjeroh;Gianfranco Doretto
- 通讯作者:Stanislav Pidhorskyi;Ranya Almohsen;D. Adjeroh;Gianfranco Doretto
Detecting Drug-Drug Interactions using Protein Sequence-Structure Similarity Networks
使用蛋白质序列结构相似性网络检测药物间相互作用
- DOI:10.1109/bibm52615.2021.9669858
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Islam, Saminur;Abbasi, Ahmed;Agarwal, Nitin;Zheng, Wanhong;Doretto, Gianfranco;Adjeroh, Donald A.
- 通讯作者:Adjeroh, Donald A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Adjeroh其他文献
AI analysis for ejection fraction estimation from 12-lead ECG
基于 12 导联心电图的射血分数估计的人工智能分析
- DOI:
10.1038/s41598-025-97113-0 - 发表时间:
2025-04-18 - 期刊:
- 影响因子:3.900
- 作者:
Alina Devkota;Rukesh Prajapati;Amr El-Wakeel;Donald Adjeroh;Brijesh Patel;Prashnna Gyawali - 通讯作者:
Prashnna Gyawali
Understanding ChatGPT: Impact Analysis and Path Forward for Teaching Computer Science and Engineering
了解 ChatGPT:计算机科学与工程教学的影响分析和前进道路
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Paramarshi Banerjee;Anurag Srivastava;Donald Adjeroh;Y. R. Reddy;Nima Karimian;Ramana Reddy - 通讯作者:
Ramana Reddy
ItpCtrl-AI: End-to-end interpretable and controllable artificial intelligence by modeling radiologists’ intentions
- DOI:
10.1016/j.artmed.2024.103054 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Trong-Thang Pham;Jacob Brecheisen;Carol C. Wu;Hien Nguyen;Zhigang Deng;Donald Adjeroh;Gianfranco Doretto;Arabinda Choudhary;Ngan Le - 通讯作者:
Ngan Le
Donald Adjeroh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Adjeroh', 18)}}的其他基金
Collaborative Research: CISE-MSI: DP: III: Information Integration and Association Pattern Discovery in Precision Phenomics
合作研究:CISE-MSI:DP:III:精密表型组学中的信息集成和关联模式发现
- 批准号:
2318708 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
NRT-HDR: Bridges in Digital Health
NRT-HDR:数字健康的桥梁
- 批准号:
2125872 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
RII Track 2 FEC: Multi-Scale Integrative Approach to Digital Health: Collaborative Research and Education in Smart Health in West Virginia and Arkansas
RII Track 2 FEC:数字健康的多尺度综合方法:西弗吉尼亚州和阿肯色州智能健康的合作研究和教育
- 批准号:
1920920 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Cooperative Agreement
Workshop: Community Building for Long Non-Coding RNA; Fall/Summer; Morgantown, WVA; Houston, TX
研讨会:长非编码RNA社区建设;
- 批准号:
1747788 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761792 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
SBP 2015 Outreach Efforts to Increase Diversity and Participation of Minorities
SBP 2015 旨在增加少数群体多样性和参与度的外展工作
- 批准号:
1523458 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: CRUFS: A Unified Framework for Social Media Analysis of Adverse Drug Events
EAGER:协作研究:CRUFS:药物不良事件社交媒体分析的统一框架
- 批准号:
1552860 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
SBP 2012 Outreach Efforts to Increase Diversity and Participation of Minorities
SBP 2012 旨在增加少数群体多样性和参与度的外展工作
- 批准号:
1225981 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Computational Public Drug Surveillance
EAGER:合作研究:计算公共药物监测
- 批准号:
1236983 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
U.S.-New Zealand and Australia Collaboration on Research for Data Compression
美国、新西兰和澳大利亚在数据压缩研究方面的合作
- 批准号:
0331896 - 财政年份:2004
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant