CIF:Small:Machine Learning Based Turbo Detection for Two and Three Dimensional Magnetic Recording
CIF:Small:基于机器学习的二维和三维磁记录 Turbo 检测
基本信息
- 批准号:1817083
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates two and three dimensional magnetic recording (TDMR and 3DMR) for next generation hard disk drives. In TDMR, bits are written on two-dimensional patches of a magnetic storage disk, whereas in 3DMR bits are written on multiple disk layers. TDMR is an emerging technology that promises up to an order of magnitude increase in information bits per unit of disk area, without requiring radical redesign of the disk. 3DMR is an even newer technology that has the promise of significant areal information density increases over TDMR. A key problem in TDMR and 3DMR is that, at high densities, some bits are not written to any of the magnetic grains on the disk. Moreover, one must contend with signal dispersion: along-track, across-tracks, and between layers. This project investigates machine learning for turbo detection of TDMR and 3DMR channels at high densities of between 1 and 4 magnetic grains per coded bit. The considered machine learning topics include design of local area influence probabilistic model detectors, recently introduced by the investigators, and design of deep neural network detectors for TDMR and 3DMR. Through established collaborations, the investigators will validate the developed techniques with realistic waveforms and will facilitate technology transfer. The project also includes educational and outreach components. The investigators will work with the Voiland College of Engineering Diversity Programs office to identify potential undergraduate researchers from underrepresented groups to participate in the project.The specific technical objectives of this project are: (i) developing information-theoretic design techniques for deep neural networks, (ii) designing machine learning based media noise predictors for TDMR turbo-detectors, (iii) designing deep neural network detectors that handle both two-dimensional intersymbol interference and media noise, (iv) generalizing the machine learning based detector designs for 3DMR, and (v) evaluating the developed designs with TDMR and 3DMR waveforms derived from realistic micromagnetic simulations, obtained from international collaborators. This work is expected to provide significant progress toward the industry's information density target of 10 Terabits per square inch.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目研究用于下一代硬盘驱动器的二维和三维磁记录(TDMR和3DMR)。在TDMR中,位被写入磁存储盘的二维补丁上,而在3DMR中,位被写入多个盘层上。TDMR是一种新兴的技术,它承诺每单位磁盘面积的信息位数增加一个数量级,而不需要对磁盘进行根本性的重新设计。3DMR是一种甚至更新的技术,其具有比TDMR显著增加面信息密度的前景。TDMR和3DMR中的一个关键问题是,在高密度下,一些位没有写入磁盘上的任何磁性颗粒。此外,必须应对信号分散:沿轨道,跨轨道和层之间。该项目研究了TDMR和3DMR通道的Turbo检测的机器学习,其密度在每个编码位1到4个磁性颗粒之间。所考虑的机器学习主题包括研究人员最近引入的局部区域影响概率模型检测器的设计,以及TDMR和3DMR的深度神经网络检测器的设计。通过已建立的合作,研究人员将用逼真的波形验证所开发的技术,并将促进技术转让。该项目还包括教育和外联部分。调查人员将与Voiland工程学院多样性项目办公室合作,从代表性不足的群体中确定潜在的本科研究人员参与该项目。该项目的具体技术目标是:(i)开发用于深度神经网络的信息理论设计技术,(ii)为TDMR涡轮探测器设计基于机器学习的媒体噪声预测器,(iii)设计处理二维符号间干扰和媒体噪声的深度神经网络检测器,(iv)将基于机器学习的检测器设计推广到3DMR,以及(v)使用从国际合作者获得的真实微磁模拟中获得的TDMR和3DMR波形评估所开发的设计。这项工作预计将为业界实现每平方英寸10太比特的信息密度目标提供重大进展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turbo-Detection for Multilayer Magnetic Recording Using Deep Neural Network-Based Equalizer and Media Noise Predictor
使用基于深度神经网络的均衡器和介质噪声预测器进行多层磁记录的 Turbo 检测
- DOI:10.1109/tmag.2021.3122136
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Sayyafan, Amirhossein;Aboutaleb, Ahmed;Belzer, Benjamin J.;Sivakumar, Krishnamoorthy;Greaves, Simon;Chan, Kheong Sann
- 通讯作者:Chan, Kheong Sann
Data Recovery for Multilayer Magnetic Recording
多层磁记录的数据恢复
- DOI:10.1109/tmag.2019.2937692
- 发表时间:2019
- 期刊:
- 影响因子:2.1
- 作者:Chan, Kheong Sann;Aboutaleb, Ahmed;Sivakumar, Krishnamoorthy;Belzer, Benjamin;Wood, Roger;Rahardja, Susanto
- 通讯作者:Rahardja, Susanto
Deep Neural Network Media Noise Predictor Turbo-Detection System for 1-D and 2-D High-Density Magnetic Recording
- DOI:10.1109/tmag.2020.3038419
- 发表时间:2020-08
- 期刊:
- 影响因子:2.1
- 作者:Amirhossein Sayyafan;Ahmed Aboutaleb;B. Belzer;K. Sivakumar;Anthony Aguilar;Christopher A. Pinkham;K. Chan;Ashish James
- 通讯作者:Amirhossein Sayyafan;Ahmed Aboutaleb;B. Belzer;K. Sivakumar;Anthony Aguilar;Christopher A. Pinkham;K. Chan;Ashish James
A perspective on deep neural network-based detection for multilayer magnetic recording
- DOI:10.1063/5.0051085
- 发表时间:2021-07
- 期刊:
- 影响因子:4
- 作者:Ahmed Aboutaleb;Amirhossein Sayyafan;K. Sivakumar;B. Belzer;S. Greaves;K. Chan;R. Wood
- 通讯作者:Ahmed Aboutaleb;Amirhossein Sayyafan;K. Sivakumar;B. Belzer;S. Greaves;K. Chan;R. Wood
Deep Neural Network-based Detection and Partial Response Equalization for Multilayer Magnetic Recording
基于深度神经网络的多层磁记录检测和部分响应均衡
- DOI:10.1109/tmrc49521.2020.9366719
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:ABOUTALEB, Ahmed;SAYYAFAN, Amirhossein;BELZER, Benjamin;SIVAKUMAR, Krishnamoorthy;GREAVES, Simon;CHAN, Kheong;WOOD, Roger
- 通讯作者:WOOD, Roger
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Belzer其他文献
Design of Low Power & Reliable Networks on Chip Through Joint Crosstalk Avoidance and Multiple Error Correction Coding
- DOI:
10.1007/s10836-007-5035-1 - 发表时间:
2008-01-05 - 期刊:
- 影响因子:1.300
- 作者:
Amlan Ganguly;Partha Pratim Pande;Benjamin Belzer;Cristian Grecu - 通讯作者:
Cristian Grecu
Benjamin Belzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Belzer', 18)}}的其他基金
CIF:Small:GOALI:Signal Processing and Coding for Two-Dimensional Magnetic Recording Channels
CIF:Small:GOALI:二维磁记录通道的信号处理和编码
- 批准号:
1218885 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
New Angles on the Multi-Dimensional Intersymbol Interference Problem
多维码间干扰问题的新视角
- 批准号:
0635390 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Turbo Coded Modulation for Partially Coherent Channels
部分相干信道的 Turbo 编码调制
- 批准号:
0098357 - 财政年份:2001
- 资助金额:
$ 50万 - 项目类别:
Continuing grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
- 批准号:
2312753 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
- 批准号:
2312752 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
- 批准号:
2236484 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2343869 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
- 批准号:
2236483 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
- 批准号:
2225617 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2246417 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153607 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
- 批准号:
2205004 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153606 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant