Effective Boundedness Results in Algebraic Geometry
代数几何中的有效有界性结果
基本信息
- 批准号:1817309
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-16 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to study connections between different aspects of geometry: birational geometry and differential geometry. Specifically, it deals with natural questions on how many geometric objects possessing given properties arising both in algebraic geometry and differential geometry do exist. Such questions are known as "boundedness of classes of algebraic varieties." The project is divided in two parts in which the PI will especially aim to understand different geometrical aspects related to the boundedness of certain classes of varieties (geometric objects defined as zero loci of polynomial equations) and applications of such results. The main aim is to develop methods that can be used to extend classical results in low-dimensional geometry to higher dimensions using techniques arising from the developed in the last 20 years theory known as the "minimal model program." Some of these results will have application to string theory in mathematical physics.The first part of the project focuses on boundedness of Calabi-Yau varieties. Even though Calabi-Yau manifolds are very simple algebraic varieties from many points of view, their boundedness properties are still poorly understood. The main goal of this part of the project is to study elliptic fibered Calabi-Yau varieties. It is known that in low dimensions they satisfy interesting boundedness properties and the PI intends to extend such results in arbitrary dimension. These results have applications to the minimal model program, the classification of algebraic varieties and F-theory. The last part of this project aims to explore the implications of similar techniques to the theory of Kahler-Einstein metric with cone-edge singularities. The main motivation for this project is the study of the birational geometry of toroidal compactifications of ball quotients and more generally of higher ranks locally symmetric varieties. As part of this project, the PI intends to develop techniques that eventually will work even with compactifications of finite volume Kahler manifolds with pinched negative sectional curvature.
该项目的目的是研究几何不同方面之间的联系:双有理几何和微分几何。具体来说,它解决了代数几何和微分几何中存在多少具有给定属性的几何对象的自然问题。此类问题被称为“代数簇类的有界性”。该项目分为两个部分,其中 PI 将特别致力于理解与某些类簇(定义为多项式方程零轨迹的几何对象)有界性相关的不同几何方面以及这些结果的应用。主要目标是开发可用于将低维几何中的经典结果扩展到更高维度的方法,利用过去 20 年开发的理论(称为“最小模型程序”)中产生的技术。其中一些结果将应用于数学物理中的弦理论。该项目的第一部分重点关注 Calabi-Yau 簇的有界性。尽管卡拉比-丘流形从许多角度来看都是非常简单的代数簇,但它们的有界性质仍然知之甚少。这部分项目的主要目标是研究椭圆纤维 Calabi-Yau 品种。众所周知,在低维度中它们满足有趣的有界属性,并且 PI 打算将这样的结果扩展到任意维度。这些结果可应用于最小模型程序、代数簇分类和 F 理论。该项目的最后一部分旨在探索类似技术对具有锥边奇点的卡勒-爱因斯坦度量理论的影响。该项目的主要动机是研究球商环形紧化的双有理几何,以及更普遍的高阶局部对称簇的双有理几何。作为该项目的一部分,PI 打算开发技术,最终即使在压缩负截面曲率的有限体积卡勒流形的情况下也能发挥作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriele Di Cerbo其他文献
Boundedness of elliptic Calabi-Yau varieties with a rational section.
有理截面椭圆形 Calabi-Yau 簇的有界性。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
C. Birkar;Gabriele Di Cerbo;R. Svaldi - 通讯作者:
R. Svaldi
On Fujita's spectrum conjecture
- DOI:
10.1016/j.aim.2017.02.018 - 发表时间:
2016-03 - 期刊:
- 影响因子:0
- 作者:
Gabriele Di Cerbo - 通讯作者:
Gabriele Di Cerbo
On Fujita’s log spectrum conjecture
- DOI:
10.1007/s00208-015-1333-6 - 发表时间:
2012-10 - 期刊:
- 影响因子:1.4
- 作者:
Gabriele Di Cerbo - 通讯作者:
Gabriele Di Cerbo
A sharp cusp count for complex hyperbolic surfaces and related results
复杂双曲曲面的尖锐尖点计数及相关结果
- DOI:
10.1007/s00013-014-0666-9 - 发表时间:
2014 - 期刊:
- 影响因子:0.6
- 作者:
Gabriele Di Cerbo;L. F. Di Cerbo - 通讯作者:
L. F. Di Cerbo
A cohomological interpretation of Bogomolov's instability
博戈莫洛夫不稳定性的上同调解释
- DOI:
10.1090/s0002-9939-2013-11621-7 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Gabriele Di Cerbo - 通讯作者:
Gabriele Di Cerbo
Gabriele Di Cerbo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriele Di Cerbo', 18)}}的其他基金
Effective Boundedness Results in Algebraic Geometry
代数几何中的有效有界性结果
- 批准号:
1702358 - 财政年份:2017
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
相似海外基金
On the Uniform Boundedness Conjecture for Drinfeld Modules
关于Drinfeld模的一致有界性猜想
- 批准号:
21J11912 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effective Boundedness Results in Algebraic Geometry
代数几何中的有效有界性结果
- 批准号:
1702358 - 财政年份:2017
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
To determine boundedness or otherwise of Scattering maps in gravitational collapse spacetimes.
确定引力塌缩时空中散射图的有界性或其他方面。
- 批准号:
1936235 - 财政年份:2017
- 资助金额:
$ 11万 - 项目类别:
Studentship
Boundedness of Fano varieties
Fano 簇的有界性
- 批准号:
16K17558 - 财政年份:2016
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Potential density, uniform boundedness, and points in special position
势密度、一致有界性和特殊位置点
- 批准号:
1501515 - 财政年份:2015
- 资助金额:
$ 11万 - 项目类别:
Continuing Grant
Estimation of tsunami wave loading on buildings assuming the boundedness of momentum flux and Froude number
假设动量通量和弗劳德数有界,估计海啸波对建筑物的荷载
- 批准号:
15K06318 - 财政年份:2015
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Boundedness problems on the minimal model program and singularities
最小模型程序和奇点的有界问题
- 批准号:
24684003 - 财政年份:2012
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
RUI: Boundedness questions in arithmetic dynamics
RUI:算术动力学中的有界性问题
- 批准号:
0901494 - 财政年份:2009
- 资助金额:
$ 11万 - 项目类别:
Standard Grant














{{item.name}}会员




