RUI: Boundedness questions in arithmetic dynamics
RUI:算术动力学中的有界性问题
基本信息
- 批准号:0901494
- 负责人:
- 金额:$ 14.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."This project concerns topics surrounding two key conjectures that have arisen in recent years in the field of number-theoretic dynamics. The first conjecture, stated by Morton and Silverman in 1994, predicts that there is some uniform upper bound for the number of preperiodic points of a given dynamical system that happen to be rational numbers.The second conjecture states that there is a uniform lower bound for the canonical height of a non-preperiodic rational point; in other words, roughly speaking, the non-preperiodicity of such a point must become obvious after a bounded number of iterations of the dynamical system. While easy to describe either by example or by formal statement, both conjectures quickly lead to deep and subtle arithmetic problems. Over the past decade or two, there has been great progress on such problems, and a substantial amount of technical machinery, some due to the investigator, has been developed to help answer them:advances in dynamics over local fields, capacity theory of Julia sets, local canonical heights, and dynamical Green's functions. The resulting theory has parallels both to the analytic study of complex dynamics and to the arithmetic study of rational points on elliptic curves and other algebraic varieties, and it has drawn interest from specialists in both fields.At its heart, the focus of this project is a type of classical Diophantine problem: to understand the set of rational number solutions to a naturally arising set of polynomial equations. Such problems have been a major theme in the study of number theory for thousands of years. More specifically, a central goal of this project is to further our theoretical understanding of Diophantine problems arising from a certain kind of dynamics: the iteration of a polynomial or rational function. At the same time, because this dynamical subfield of number theory is relatively young, many of its aspects are accessible to undergraduates but still remain unsolved problems.Thus, as in an earlier successful project, the investigator plans to supervise some students in an REU summer research project to aid in their mathematical training. The REU will include intense computer computations, especially of canonical heights and preperiodic points, and any relevant data generated will be disseminated to the research community via publications and the web.
“这项奖励是根据2009年美国复苏和再投资法案(公法111-5)资助的。”本项目涉及近年来在数论动力学领域出现的两个关键猜想。第一个猜想是由Morton和Silverman在1994年提出的,预言了给定动力系统的周期前点恰好是有理数的数目存在一致的上界。第二个猜想表明非周期前有理点的正则高度存在一致的下界;换句话说,粗略地说,在动力系统的有限次迭代之后,这样一个点的非前周期性必须变得明显。虽然很容易用例子或形式陈述来描述,但这两种猜想很快就会导致深刻而微妙的算术问题。在过去的十年或二十年中,在这些问题上已经取得了很大的进展,并且已经开发了大量的技术机器,其中一些是由于研究者的原因,以帮助回答这些问题:局部场动力学的进展,Julia集的容量理论,局部规范高度和动态格林函数。由此产生的理论与复杂动力学的解析研究和椭圆曲线上有理点的算术研究以及其他代数变体都有相似之处,并引起了这两个领域专家的兴趣。这个项目的核心是一个经典的丢芬图问题:理解一组自然产生的多项式方程的有理数解的集合。几千年来,这些问题一直是数论研究的一个主要主题。更具体地说,这个项目的中心目标是进一步加深我们对丢番图问题的理论理解,这些问题源于某种动力学:多项式或有理函数的迭代。同时,由于数论的这个动态子领域相对年轻,它的许多方面对本科生来说是可以理解的,但仍然存在未解决的问题。因此,正如在早期成功的项目中一样,研究者计划在REU的夏季研究项目中指导一些学生,以帮助他们进行数学训练。REU将包括密集的计算机计算,特别是规范高度和周期前点,产生的任何相关数据将通过出版物和网络传播给研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Benedetto其他文献
Robert Benedetto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Benedetto', 18)}}的其他基金
RUI: Arboreal Galois Groups and Nonarchimedean Dynamics
RUI:树栖伽罗瓦群和非阿基米德动力学
- 批准号:
2101925 - 财政年份:2021
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
RUI: Galois Action and Entropy in Non-archimedean Dynamics
RUI:非阿基米德动力学中的伽罗瓦作用和熵
- 批准号:
1501766 - 财政年份:2015
- 资助金额:
$ 14.79万 - 项目类别:
Continuing Grant
RUI: Families, Ramification, and Berkovich Spaces in Non-archimedean Dynamics
RUI:非阿基米德动力学中的族、分支和伯科维奇空间
- 批准号:
1201341 - 财政年份:2012
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
RUI: Heights, Dynamics, and Preperiodic Points
RUI:高度、动态和前期点
- 批准号:
0600878 - 财政年份:2006
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Non-archimedean discrete dynamical systems
非阿基米德离散动力系统
- 批准号:
0071541 - 财政年份:2000
- 资助金额:
$ 14.79万 - 项目类别:
Fellowship Award
相似海外基金
On the Uniform Boundedness Conjecture for Drinfeld Modules
关于Drinfeld模的一致有界性猜想
- 批准号:
21J11912 - 财政年份:2021
- 资助金额:
$ 14.79万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effective Boundedness Results in Algebraic Geometry
代数几何中的有效有界性结果
- 批准号:
1702358 - 财政年份:2017
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
To determine boundedness or otherwise of Scattering maps in gravitational collapse spacetimes.
确定引力塌缩时空中散射图的有界性或其他方面。
- 批准号:
1936235 - 财政年份:2017
- 资助金额:
$ 14.79万 - 项目类别:
Studentship
Effective Boundedness Results in Algebraic Geometry
代数几何中的有效有界性结果
- 批准号:
1817309 - 财政年份:2017
- 资助金额:
$ 14.79万 - 项目类别:
Standard Grant
Boundedness of Fano varieties
Fano 簇的有界性
- 批准号:
16K17558 - 财政年份:2016
- 资助金额:
$ 14.79万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Potential density, uniform boundedness, and points in special position
势密度、一致有界性和特殊位置点
- 批准号:
1501515 - 财政年份:2015
- 资助金额:
$ 14.79万 - 项目类别:
Continuing Grant
Estimation of tsunami wave loading on buildings assuming the boundedness of momentum flux and Froude number
假设动量通量和弗劳德数有界,估计海啸波对建筑物的荷载
- 批准号:
15K06318 - 财政年份:2015
- 资助金额:
$ 14.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Boundedness problems on the minimal model program and singularities
最小模型程序和奇点的有界问题
- 批准号:
24684003 - 财政年份:2012
- 资助金额:
$ 14.79万 - 项目类别:
Grant-in-Aid for Young Scientists (A)