Large scale ancestral reconstruction of protein sequence, structure and molecular function
蛋白质序列、结构和分子功能的大规模祖先重建
基本信息
- 批准号:1817942
- 负责人:
- 金额:$ 36.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using statistical models to infer the sequences of ancestral molecules allows researchers to directly study ancient molecules in the laboratory. These studies have greatly improved our understanding of how molecules work and are being used to generate new therapeutics and inform biochemical engineering efforts. However, errors made when inferring ancestral sequences could undermine downstream laboratory studies. The goal of this project is to characterize how and why ancestral sequence reconstruction might fail and to develop new methods that overcome these problems. The primary benefit of this research is two-fold. First, understanding the causes of sequence reconstruction errors will help researchers better evaluate the reliability of their results, so that erroneous sequences are not inadvertently used in costly functional studies. Second, the development of more reliable methods will allow researchers to study the functions of ancient molecules that could not otherwise be examined in the laboratory. By improving the methods used to infer ancestral molecular sequences, the results of this research are expected to improve our understanding of molecular evolutionary processes and empower studies using these approaches to develop useful biological molecules. Broader impacts activities include developing new courses to train the next generation of scientists in ancestral sequence reconstruction and its uses.Developing robust ASR methods depends on understanding when and how ASR can fail. Using analyses of simulated and biological sequences, this project will test the hypothesis that ancestral sequence reconstruction is sensitive to alignment ambiguity and will develop new methods to incorporate alignment ambiguity into the ASR process. High-throughput ASR depends on accurate prediction of molecular function. This project will test the hypothesis that structure-based function prediction is sensitive to uncertainty in the underlying structural model, but accuracy can be improved by optimizing structures. This project will integrate ASR methods with structure-based function prediction to characterize the large-scale evolution of double-stranded RNA binding domains, which mediate protein-RNA and protein-protein interactions across a variety of gene contexts throughout all domains of life. By determining the links between protein sequence substitutions, structural changes and functional evolution across large protein families, this work has the potential to transform our understanding of the general principles by which molecular function evolves, fundamentally advancing molecular-evolutionary theory and providing a foundation for rational protein engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用统计模型来推断祖先分子的序列,使研究人员能够在实验室中直接研究古老的分子。这些研究极大地提高了我们对分子如何工作的理解,并被用于产生新的治疗方法和为生物化学工程工作提供信息。然而,在推断祖先序列时所犯的错误可能会破坏下游的实验室研究。该项目的目标是描述祖先序列重建可能失败的方式和原因,并开发克服这些问题的新方法。这项研究的主要好处是双重的。首先,了解序列重建错误的原因将有助于研究人员更好地评估其结果的可靠性,以便错误的序列不会无意中用于昂贵的功能研究。其次,更可靠的方法的发展将使研究人员能够研究古代分子的功能,否则无法在实验室中进行检查。通过改进用于推断祖先分子序列的方法,这项研究的结果有望提高我们对分子进化过程的理解,并使使用这些方法的研究能够开发有用的生物分子。更广泛的影响活动包括开发新的课程,以培训下一代科学家在祖先序列重建及其用途。开发强大的ASR方法取决于了解ASR何时以及如何失败。利用模拟和生物序列的分析,该项目将测试祖先序列重建对比对模糊性敏感的假设,并将开发新的方法将比对模糊性纳入ASR过程。高通量ASR依赖于对分子功能的准确预测。本项目将测试基于结构的功能预测对基础结构模型中的不确定性敏感的假设,但可以通过优化结构来提高准确性。该项目将ASR方法与基于结构的功能预测相结合,以表征双链RNA结合结构域的大规模进化,该结构域在生命的所有领域中介导蛋白质-RNA和蛋白质-蛋白质相互作用。通过确定蛋白质序列取代,结构变化和大型蛋白质家族的功能进化之间的联系,这项工作有可能改变我们对分子功能进化的一般原则的理解,从根本上推进分子-该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
eCOMPASS: evaluative comparison of multiple protein alignments by statistical score.
- DOI:10.1093/bioinformatics/btab374
- 发表时间:2021-10-25
- 期刊:
- 影响因子:0
- 作者:Neuwald AF;Kolaczkowski BD;Altschul SF
- 通讯作者:Altschul SF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Chevrette其他文献
Marc Chevrette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
- 批准号:81172775
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
宇宙暗成分物理研究
- 批准号:10675062
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
语义Web的无尺度网络模型及高性能语义搜索算法研究
- 批准号:60503018
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
超声防垢阻垢机理的动态力学分析
- 批准号:10574086
- 批准年份:2005
- 资助金额:35.0 万元
- 项目类别:面上项目
探讨复杂动力网络的同步能力和鲁棒性
- 批准号:60304017
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 36.13万 - 项目类别:
Fellowship
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307253 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant