Unraveling the early events of the iron deficiency response at cell-specific resolution

以细胞特异性分辨率揭示缺铁反应的早期事件

基本信息

  • 批准号:
    1818312
  • 负责人:
  • 金额:
    $ 99.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Award AbstractTitle: How plants sense iron: Unraveling the early events of the iron deficiency response at cell-specific resolution PI: David Mendoza-Cozatl, Univ. of Missouri, Columbia.Co-PIs: Scott Peck, Univ. of Missouri, Columbia; Dmitri Nusinow, Danforth Plant Science CenterIron is an essential nutrient for humans, and plants are the main dietary source of iron not only for humans but also for livestock. Iron deficiency in humans has been described by the World Health Organization as the most common nutritional deficiency affecting nearly 2.2 billion people (~30% of the world's population). Therefore, understanding how plants sense, take up and re-distribute iron in edible tissues is essential. Traditionally, iron sensing by plants was believed to occur exclusively by roots that are in close contact with iron sources in the soil, however, provocative preliminary data from our laboratories and others suggests that plants rapidly sense changes in iron concentrations in specialized cells located in leaves, termed companion cells. This project will focus on the early events of iron deficiency responses in plants and on the communication between leaves and roots to adapt when iron becomes scarce. In addition, this project will provide training to undergraduate and graduate students on cutting-edge molecular biology techniques, particularly techniques that address changes in specific tissues such as the veins of plants, which have been shown to play an important role in leaf-to-root communication. Moreover, this project will emphasize collaborative work between students from different disciplines including computer sciences, biochemistry and plant sciences. Learning how to communicate across disciplines is critical for developing novel techniques and instrumentation to study in detail how plants respond and adapt to changes in nutrient availability. In the long-term, students capable of understanding and bridging different disciplines will be well-equipped for the current competitive job market in academia and industry.The long-term goal of this project is the identification of molecular mechanisms mediating iron (Fe) sensing and homeostasis in plants. Respiration and photosynthesis heavily depend on the redox properties of iron to generate and store energy; however, this reactivity makes iron extremely toxic at high concentrations. Therefore, plants need to sense the levels of Fe within tissues and regulate Fe uptake to prevent overload and cellular damage. Despite significant advances in identifying molecular components of the Fe deficiency response in plants, the sensing and precise location of Fe sensing in plants remains unknown. More recently, it has been found that specific cells within the leaf vasculature (companion cells) are capable of sensing changes in iron availability more rapidly than roots. This project will use a cross-disciplinary approach to address the long-standing question about the spatial (where) and temporal (when) responses to iron deficiency in plants by identifying and integrating transcriptional and protein networks at cell-specific resolution. Several techniques, such as proximity labeling, have been specifically adapted to plants to pursue proteomic studies in specific tissues. Cell-specific translatome analyses during early stages of iron deficiency will be used to define the primary (early) and secondary (responses) to iron limitation in the vasculature and will guide high-throughput protein-DNA binding experiments to identify the molecular mechanisms driving early responses to Fe deficiency in companion cells. Experimental approaches will be complemented with modeling and simulation to produce an integrated view of plant responses to changes in iron availability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
奖项摘要标题:植物如何感知铁:以细胞特异性分辨率揭示缺铁反应的早期事件PI:大卫门多萨-科扎托,密苏里州大学,哥伦比亚。共同PI:斯科特派克,密苏里州大学,哥伦比亚;德米特里Nusinow,丹佛斯植物科学中心铁是人类必需的营养素,植物是人类和牲畜铁的主要膳食来源。世界卫生组织将人类缺铁描述为影响近22亿人(约占世界人口的30%)的最常见的营养缺乏症。因此,了解植物如何在可食用组织中感知、吸收和重新分配铁是至关重要的。传统上,植物对铁的感知被认为只发生在与土壤中的铁源密切接触的根部,然而,来自我们实验室和其他人的挑衅性初步数据表明,植物迅速感知位于叶子中的专门细胞(称为伴侣细胞)中铁浓度的变化。该项目将侧重于植物缺铁反应的早期事件,以及当铁变得稀缺时叶和根之间的沟通。此外,该项目还将向本科生和研究生提供尖端分子生物学技术培训,特别是处理植物叶脉等特定组织变化的技术,这些技术已被证明在叶到根的交流中发挥重要作用。此外,该项目将强调来自不同学科的学生之间的合作,包括计算机科学,生物化学和植物科学。学习如何跨学科交流对于开发新技术和仪器来详细研究植物如何响应和适应养分供应的变化至关重要。从长远来看,学生能够理解和沟通不同的学科将有能力为当前竞争激烈的就业市场在学术界和工业界做好准备。本项目的长期目标是确定介导铁(Fe)传感和植物体内平衡的分子机制。呼吸和光合作用严重依赖于铁的氧化还原特性来产生和储存能量;然而,这种反应性使得铁在高浓度下具有极强的毒性。因此,植物需要感知组织内的铁水平并调节铁的吸收以防止过载和细胞损伤。尽管在鉴定植物缺铁反应的分子组分方面取得了重大进展,但植物中铁传感的传感和精确定位仍然未知。最近,人们发现叶脉管系统内的特定细胞(伴随细胞)能够比根更快地感知铁可用性的变化。该项目将采用跨学科的方法,通过识别和整合转录和蛋白质网络,以细胞特异性的分辨率来解决植物缺铁的空间(在哪里)和时间(何时)反应的长期问题。几种技术,如邻近标记,已专门适用于植物,在特定组织中进行蛋白质组学研究。在缺铁的早期阶段,细胞特异性翻译组分析将用于定义血管系统中对铁限制的初级(早期)和次级(反应),并将指导高通量蛋白质-DNA结合实验,以确定驱动伴细胞中对缺铁的早期反应的分子机制。实验方法将与建模和仿真相结合,以综合了解电厂对铁可用性变化的反应。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expression of a dominant‐negative AtNEET‐H89C protein disrupts iron–sulfur metabolism and iron homeostasis in Arabidopsis
拟南芥中显性负性 AtNEET-H89C 蛋白的表达会破坏铁硫代谢和铁稳态
  • DOI:
    10.1111/tpj.14581
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zandalinas, Sara I.;Song, Luhua;Sengupta, Soham;McInturf, Samuel A.;Grant, DeAna G.;Marjault, Henri‐Baptiste;Castro‐Guerrero, Norma A.;Burks, David;Azad, Rajeev K.;Mendoza‐Cozatl, David G.
  • 通讯作者:
    Mendoza‐Cozatl, David G.
Class I TCP transcription factor AtTCP8 modulates key brassinosteroid-responsive genes
I 类 TCP 转录因子 AtTCP8 调节关键油菜素类固醇反应基因
  • DOI:
    10.1093/plphys/kiac332
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Spears, Benjamin J;McInturf, Samuel A;Collins, Carina;Chlebowski, Meghann;Cseke, Leland J;Su, Jianbin;Mendoza-Cózatl, David G;Gassmann, Walter
  • 通讯作者:
    Gassmann, Walter
Iron Availability within the Leaf Vasculature Determines the Magnitude of Iron Deficiency Responses in Source and Sink Tissues in Arabidopsis
拟南芥叶脉管系统内的铁利用率决定了源组织和库组织缺铁反应的程度
  • DOI:
    10.1093/pcp/pcac046
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Nguyen, Nga T.;Khan, Mather A.;Castro–Guerrero, Norma A.;Chia, Ju-Chen;Vatamaniuk, Olena K.;Mari, Stephane;Jurisson, Silvia S.;Mendoza-Cozatl, David G.
  • 通讯作者:
    Mendoza-Cozatl, David G.
Editorial overview: Not everyone can become a cell biologist, but a great cell biologist can come from anywhere
编辑概述:不是每个人都可以成为细胞生物学家,但伟大的细胞生物学家可以来自任何地方
  • DOI:
    10.1016/j.pbi.2023.102367
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Mendoza-Cózatl, David G.
  • 通讯作者:
    Mendoza-Cózatl, David G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Mendoza-Cozatl其他文献

David Mendoza-Cozatl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Mendoza-Cozatl', 18)}}的其他基金

Advancing our understanding of autonomous leaf-specific iron deficiency responses.
增进我们对自主叶片特异性缺铁反应的理解。
  • 批准号:
    2224839
  • 财政年份:
    2022
  • 资助金额:
    $ 99.56万
  • 项目类别:
    Standard Grant
CAREER: Molecular mechanisms of phloem transport and seed loading of heavy metals
职业:韧皮部运输和种子负载重金属的分子机制
  • 批准号:
    1252706
  • 财政年份:
    2013
  • 资助金额:
    $ 99.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

Crocin 抑制 Hartley 豚鼠早期骨关节炎发生的 作用机制研究
  • 批准号:
    TGD24H060003
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
RIPK3蛋白及其RHIM结构域在脓毒症早期炎症反应和脏器损伤中的作用和机制研究
  • 批准号:
    82372167
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
  • 批准号:
    82372089
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
环境抗雄激素干预AR/TGFB1I1致尿道下裂血管内皮细胞发育异常的机制及其“预警信号”在早期诊断中的价值
  • 批准号:
    82371605
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目
增强子在小鼠早期胚胎细胞命运决定中的功能和调控机制研究
  • 批准号:
    82371668
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
BNIP-2调控E-cadherin细胞内分选运输的机制研究
  • 批准号:
    32100540
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
玉米Edk1(Early delayed kernel 1)基因的克隆及其在胚乳早期发育中的功能研究
  • 批准号:
    31871625
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
膀胱癌高表达基因UPK3A的筛选、鉴定和相关研究
  • 批准号:
    81101922
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
精神创伤相关的抑郁症HPA轴功能与相关脑区磁共振特征研究
  • 批准号:
    81171286
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
早年心理应激对大鼠抑郁样行为及突触可塑性的影响
  • 批准号:
    81171284
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
  • 批准号:
    10825287
  • 财政年份:
    2024
  • 资助金额:
    $ 99.56万
  • 项目类别:
Impacts of Acute Ambient Air Pollution Exposure on Women's Reproductive Health: Identifying Mechanisms and Susceptible Reproductive Processes Across the Menstrual Cycle and Early Pregnancy
急性环境空气污染暴露对女性生殖健康的影响:确定月经周期和怀孕早期的机制和易受影响的生殖过程
  • 批准号:
    10645818
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
Development and implementation of a digital sleep intervention for preschoolers in foster care
为寄养中的学龄前儿童开发和实施数字睡眠干预
  • 批准号:
    10724304
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
On circuit mechanisms of reward behaviors after early-life adversity
论早年逆境后奖赏行为的循环机制
  • 批准号:
    10735759
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
  • 批准号:
    10731651
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
  • 批准号:
    10610975
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
  • 批准号:
    10584028
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
Financial Activity Data as an Objective Behavioral Marker in Bipolar Disorder: A Feasibility and Acceptance Study
金融活动数据作为双相情感障碍的客观行为标志:可行性和可接受性研究
  • 批准号:
    10575894
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
CNS-mediated fever after Adolescent Intermittent Ethanol
青少年间歇性饮酒后中枢神经系统介导的发热
  • 批准号:
    10607154
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
Childhood socioeconomic disadvantage, cumulative Adverse Childhood Experiences, and adolescent depression and anxiety symptoms
童年社会经济劣势、累积的不良童年经历以及青少年抑郁和焦虑症状
  • 批准号:
    10676396
  • 财政年份:
    2023
  • 资助金额:
    $ 99.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了