Computational Framework for Optimization with Perspective Functions and Applications to Data Analysis
透视函数优化的计算框架及其在数据分析中的应用
基本信息
- 批准号:1818946
- 负责人:
- 金额:$ 37.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data analysis is ubiquitous in modern science, essential in areas such as information technology, environmental sciences, medicine, biology, and homeland security. The mathematical formulations arising in modern data analysis pose new mathematical and computational challenges, both because of the sophistication of their formulations and their potentially very large size. In this context, it is essential to exploit structures that may be present in a system, with the dual objectives of simplifying the analysis and constructing efficient and flexible optimization algorithms that need only to perform basic tasks at each iteration. This research project aims to address these issues by developing new mathematical tools and algorithms structured around a class of so-called perspective functions that will facilitate handling of a broad range of data analysis questions.This research concerns mathematical and computational issues pertaining to perspective functions, a powerful concept that permits the extension of a convex function to a jointly convex one in terms of an additional scale variable. While perspective functions are implicitly or explicitly present in many variational formulations, especially in data analysis, few efforts have been devoted to the study of their mathematical properties and the development of computational methods that can solve them efficiently. Thus, no synthetic variational model is available to unify classes of optimization problems involving perspective functions. In addition, on the algorithmic side, there exists no principled strategy to solve such problems. In particular, the proximity operators of perspective functions are known only in limited cases, which precludes the use of powerful proximal splitting algorithms. It is the objective of this project to fill these gaps. The project aims to lay out theoretical and computational foundations for the analysis and the numerical solution of minimization problems involving perspective functions and generalizations thereof, and to apply these findings to problems in data analysis that are beyond the reach of current methods. The research methodology hinges on unifying structured variational models that are recast in product spaces and solved via proximal splitting algorithms as well as duality-driven strategies. Applications to several fields of data analysis are planned.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据分析在现代科学中无处不在,在信息技术,环境科学,医学,生物学和国土安全性等领域至关重要。在现代数据分析中产生的数学表述构成了新的数学和计算挑战,这既是其配方的复杂性及其可能非常大的大小。在这种情况下,必须利用可能存在于系统中的结构,并具有简化分析并构建有效且灵活的优化算法的双重目标,这些算法仅需要在每次迭代中执行基本任务。 This research project aims to address these issues by developing new mathematical tools and algorithms structured around a class of so-called perspective functions that will facilitate handling of a broad range of data analysis questions.This research concerns mathematical and computational issues pertaining to perspective functions, a powerful concept that permits the extension of a convex function to a jointly convex one in terms of an additional scale variable.虽然透视功能在许多变化表述中隐含或明确地存在,尤其是在数据分析中,但很少有努力专门研究其数学属性以及可以有效解决它们的计算方法的发展。因此,没有任何合成变分模型可以统一涉及透视功能的优化问题类别。此外,在算法方面,没有解决此类问题的原则策略。特别是,仅在有限的情况下才知道透视函数的接近性运算符,这排除了强大的近端分裂算法的使用。填补这些空白是该项目的目的。该项目旨在为涉及透视功能及其概括的最小化问题分析的理论和计算基础,并将这些发现应用于数据分析中的问题,这些问题无法实现当前方法的影响。该研究方法取决于统一的结构化变分模型,这些模型是在产品空间中重铸并通过近端分裂算法和双重性驱动策略解决的。计划了对数据分析的几个领域的申请。该奖项反映了NSF的法定任务,并被认为是使用基金会的知识分子优点和更广泛的影响审查标准的评估值得支持的。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Warped proximal iterations for monotone inclusions
单调包含的扭曲近端迭代
- DOI:10.1016/j.jmaa.2020.124315
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Bùi, Minh N.;Combettes, Patrick L.
- 通讯作者:Combettes, Patrick L.
c-lasso - a Python package for constrained sparse and robust regression and classification
- DOI:10.21105/joss.02844
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Léo Simpson;P. Combettes;Christian L. Müller
- 通讯作者:Léo Simpson;P. Combettes;Christian L. Müller
Projective Splitting as a Warped Proximal Algorithm
作为扭曲近端算法的投影分裂
- DOI:10.1007/s00245-022-09868-x
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Bùi, Minh N.
- 通讯作者:Bùi, Minh N.
Regression Models for Compositional Data: General Log-Contrast Formulations, Proximal Optimization, and Microbiome Data Applications
- DOI:10.1007/s12561-020-09283-2
- 发表时间:2020-06-19
- 期刊:
- 影响因子:1
- 作者:Combettes, Patrick L.;Mueller, Christian L.
- 通讯作者:Mueller, Christian L.
Solving Composite Fixed Point Problems with Block Updates
通过块更新解决复合不动点问题
- DOI:10.1515/anona-2020-0173
- 发表时间:2021
- 期刊:
- 影响因子:4.2
- 作者:Combettes, Patrick L.;Glaudin, Lilian E.
- 通讯作者:Glaudin, Lilian E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Combettes其他文献
Patrick Combettes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Combettes', 18)}}的其他基金
CIF: Small: Signal Recovery Beyond Minimization: A Monotone Inclusion Framework
CIF:小:超越最小化的信号恢复:单调包含框架
- 批准号:
2211123 - 财政年份:2022
- 资助金额:
$ 37.26万 - 项目类别:
Standard Grant
CIF: Small: The Interplay Between Convex Feasibility Problems and Minimization Problems in Signal Recovery
CIF:小:信号恢复中凸可行性问题和最小化问题之间的相互作用
- 批准号:
1715671 - 财政年份:2017
- 资助金额:
$ 37.26万 - 项目类别:
Standard Grant
Parallel Constraints Disintegration and Approximation Methods for Image Recovery
图像恢复的并行约束分解和逼近方法
- 批准号:
9705504 - 财政年份:1997
- 资助金额:
$ 37.26万 - 项目类别:
Standard Grant
RIA: Parallel Projection Methods for Set Theoretic Signal Restoration & Reconstruction
RIA:集合理论信号恢复的并行投影方法
- 批准号:
9308609 - 财政年份:1993
- 资助金额:
$ 37.26万 - 项目类别:
Standard Grant
相似国自然基金
基于向量 Gerstewitz 函数的向量鲁棒优化计算可解性统一框架的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于向量 Gerstewitz 函数的向量鲁棒优化计算可解性统一框架的研究
- 批准号:12201160
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向深度学习应用的边缘计算执行框架与优化机制研究
- 批准号:61872079
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
大数据环境下增量式迭代计算框架的研究与优化
- 批准号:61502090
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于动态膜计算框架的膜协同优化自组装DNA计算编码算法研究
- 批准号:61373066
- 批准年份:2013
- 资助金额:73.0 万元
- 项目类别:面上项目
相似海外基金
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
- 批准号:
10650695 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
A pathophysiology driven spatial dynamic modeling framework for personalized prediction and precision medicine
用于个性化预测和精准医疗的病理生理学驱动的空间动态建模框架
- 批准号:
10797133 - 财政年份:2022
- 资助金额:
$ 37.26万 - 项目类别:
A Computational Framework for Design and Optimization of Dynamic Membrane Processes
动态膜过程设计和优化的计算框架
- 批准号:
2140946 - 财政年份:2022
- 资助金额:
$ 37.26万 - 项目类别:
Standard Grant