Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions

针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施

基本信息

项目摘要

ABSTRACT Major depressive disorder (MDD) is a chronic, recurrent illness impacting 20.6% of the U.S. population, causing significant disability and an economic impact of $326.2 billion annually. One of the largest risk factors for depression chronicity and disability is inadequate antidepressant response, defined as less than a 50% improvement in depressive symptoms after starting antidepressant treatment. Antidepressants are recommended as a first-line depression treatment and taken by 70% of patients with depression. Inadequate antidepressant response is experienced by 50-60% of patients starting an antidepressant and is responsible for 47% of the economic impact and disability caused by MDD. As such, identifying risk for inadequate antidepressant response early, during a patient’s first clinical presentation for a depressive episode, would be an innovative, urgently needed first step towards preventing recurrent depressive episodes, reducing depression chronicity and disability, and improving MDD outcomes. This step aligns with The National Institute of Mental Health (NIMH) Strategic Plan Objective 3.2 to “develop strategies for tailoring existing interventions (antidepressants) to optimize (depressive episode) outcomes.” While previous studies identified separate predictors of antidepressant response, no study to date has focused on integrating known and novel predictors of inadequate antidepressant response during a patient’s first depressive episode. This knowledge gap exists as no large studies in diverse populations have integrated comprehensive clinical, demographic, genetic, AND behavioral information in one model to predict inadequate antidepressant response prior to first antidepressant treatment. Such information is crucial to improve patient care, reduce depressive disorder chronicity and disability, and tailor existing patient interventions to optimize MDD outcomes. Utilizing electronic health record data from three large, integrated healthcare systems representing over 6.9 million members (Kaiser Permanente (KP) Northern California, KP Washington, and HealthPartners), we aim to quantify inadequate antidepressant response risk at the time of a patient’s first clinical presentation for a depressive episode by integrating clinical, demographic, genetic, and behavioral information in one predictive model. To accomplish this aim, we will use translational machine learning and predictive modeling, internal and external model validation and testing, prospective validation, and existing genome-wide genotypic data. Further, we will examine barriers and facilitators to clinical applications of predictive models for MDD to facilitate clinical translation and implementation of the predictive model, reducing the time between research innovation and clinical application. Our long-term goal is to develop a clinical tool informing decision making and promoting MDD treatment optimization.
摘要 重度抑郁症(MDD)是一种慢性、复发性疾病,影响20.6%的美国人口, 造成严重残疾,每年造成3262亿美元的经济影响。最大的风险因素之一 抑郁症慢性和残疾是抗抑郁药反应不足,定义为低于50% 开始抗抑郁治疗后抑郁症状改善。抗抑郁药被 被推荐为一线抑郁症治疗药物,70%的抑郁症患者服用。不足 50-60%开始抗抑郁药治疗的患者会出现抗抑郁反应, 47%的经济影响和由MDD引起的残疾。因此,识别风险不充分 在患者首次抑郁发作的临床表现期间,早期抗抑郁反应将是 一个创新的,迫切需要的第一步,以防止复发性抑郁发作,减少 抑郁症慢性化和残疾,改善MDD的结果。这一步骤与国家研究所保持一致 战略计划目标3.2:“制定战略, (抗抑郁药)以优化(抑郁发作)结果。” 虽然以前的研究确定了抗抑郁药反应的独立预测因子,但迄今为止还没有研究关注 整合已知和新的抗抑郁药反应不足的预测因素, 抑郁发作这种知识差距的存在是因为没有在不同人群中进行的大型研究整合 在一个模型中综合临床、人口统计学、遗传学和行为学信息, 在首次抗抑郁药治疗前的抗抑郁反应。这些信息对于改善患者的 护理,减少抑郁症的慢性化和残疾,并定制现有的患者干预措施,以优化 MDD结局。利用来自三个大型综合医疗保健系统的电子健康记录数据 代表超过690万名会员(Kaiser Permanente(KP)北方加州、KP华盛顿和 HealthPartners),我们的目标是量化患者首次服用抗抑郁药时抗抑郁药反应不足的风险。 通过整合临床、人口统计学、遗传学和行为学,确定抑郁发作的临床表现 一个预测模型中的信息。为了实现这一目标,我们将使用翻译机器学习, 预测建模,内部和外部模型验证和测试,前瞻性验证,以及现有的 全基因组基因型数据。此外,我们还将研究临床应用的障碍和促进因素, MDD的预测模型,以促进临床翻译和预测模型的实施, 研究创新和临床应用之间的时间。我们的长期目标是开发一种临床工具 为决策提供信息并促进MDD治疗优化。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Association of Adverse Childhood Experiences and Resilience With Depression and Anxiety During Pregnancy.
不良童年经历和复原力与怀孕期间抑郁和焦虑的关联。
  • DOI:
    10.1097/aog.0000000000005545
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Watson,CareyR;Eaton,Abigail;Campbell,CynthiaI;Alexeeff,StaceyE;Avalos,LyndsayA;Ridout,KathrynK;Young-Wolff,KellyC
  • 通讯作者:
    Young-Wolff,KellyC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathryn Kelly Ridout其他文献

Kathryn Kelly Ridout的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
  • 批准号:
    JCZRQN202500010
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
  • 批准号:
    2025JJ70209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
  • 批准号:
    2023JJ50274
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
  • 批准号:
    81973577
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
  • 批准号:
    81602908
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
  • 批准号:
    81501928
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
  • 批准号:
    MR/X032809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
  • 批准号:
    2335955
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
  • 批准号:
    DP240103257
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
  • 批准号:
    DP240100408
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
  • 批准号:
    DP240100111
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
  • 批准号:
    502786
  • 财政年份:
    2024
  • 资助金额:
    $ 81.25万
  • 项目类别:
    Directed Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了