Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations
随机场的内在复杂性及其与随机矩阵和随机微分方程的联系
基本信息
- 批准号:1821010
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scientific computing together with effective use of data plays a more and more important role in many science and engineering applications. Modeling and understanding uncertainty or randomness inherited in these application is of utmost importance. Random fields are commonly used for modeling of space (or time) dependent stochastic processes in science and engineering problems, such as image and signal processing, Bayesian inference, data analysis, uncertainty quantification, and many other applications. It has the flexibility and generality to model randomness with spatial structures or vice versa. This project will characterize the intrinsic complexity of a random field.For the purpose of analysis as well as modeling and computation in practice, a separable representation or approximation of a random field in the form of separating deterministic and stochastic variables is very useful. This project will characterize the intrinsic complexity of a random field by providing accurate and computable lower bounds on the number of terms needed in a separable approximation of a random field for a given accuracy. This characterization can be related to the well-known notion of Kolmogorov n-width in information theory. It can reveal the intrinsic degrees of freedom (or richness) of a random field. It is also useful for an estimation of the intrinsic complexity of a system that is modeled upon a random field in real applications. For example, the investigator will study the intrinsic complexity of the solution space for partial differential equations that involve random material properties and develop efficient numerical methods that can explore low dimensional structures in these systems. By regarding a set of random vectors as the discrete sampling of a random field and vice versa, the investigator will also study the question of random vector embedding and explore its connections to random matrix theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学计算和数据的有效利用在许多科学和工程应用中发挥着越来越重要的作用。建模和理解这些应用中继承的不确定性或随机性是至关重要的。随机场通常用于科学和工程问题中依赖于空间(或时间)的随机过程的建模,例如图像和信号处理,贝叶斯推理,数据分析,不确定性量化以及许多其他应用。它对空间结构的随机性建模具有灵活性和通用性,反之亦然。这个项目将描述随机场的内在复杂性。对于实际分析以及建模和计算的目的,以分离确定性变量和随机变量的形式对随机场的可分表示或近似是非常有用的。该项目将通过提供给定精度的随机场可分离近似所需的项数的精确和可计算的下界来表征随机场的内在复杂性。这种特征可以与信息论中众所周知的Kolmogorov n-width概念有关。它可以揭示随机场的内在自由度(或丰富性)。对于在实际应用中以随机场为模型的系统的内在复杂性的估计也是有用的。例如,研究者将研究涉及随机材料特性的偏微分方程解空间的内在复杂性,并开发有效的数值方法来探索这些系统中的低维结构。通过将一组随机向量视为随机场的离散采样,反之亦然,研究者还将研究随机向量嵌入问题,并探索其与随机矩阵理论的联系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A data-driven approach for multiscale elliptic PDEs with random coefficients based on intrinsic dimension reduction
- DOI:10.1137/19m1277485
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Sijing Li;Zhiwen Zhang;Hongkai Zhao
- 通讯作者:Sijing Li;Zhiwen Zhang;Hongkai Zhao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong-Kai Zhao其他文献
Hong-Kai Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong-Kai Zhao', 18)}}的其他基金
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
- 批准号:
2309551 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations
随机场的内在复杂性及其与随机矩阵和随机微分方程的联系
- 批准号:
2048877 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Computational Forward and Inverse Radiative Transfer
计算正向和反向辐射传输
- 批准号:
2012860 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Shape and data analysis using computational differential geometry
使用计算微分几何进行形状和数据分析
- 批准号:
1418422 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
A new approximation for effective Hamiltonians
有效哈密顿量的新近似
- 批准号:
1115698 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
The Fast Sweeping Method and Its Applications
快速扫掠方法及其应用
- 批准号:
0811254 - 财政年份:2008
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Efficient Numerical Methods For Material Transport On Moving Interfaces And Hamilton Jacobi Equations
移动界面上物质传输的有效数值方法和哈密顿雅可比方程
- 批准号:
0513073 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Applications of Variational Level Set Methods to Some Multiphase Problems
变分水平集方法在一些多相问题中的应用
- 批准号:
9706566 - 财政年份:1997
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/Y00390X/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
- 批准号:
23K23857 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
- 批准号:
DE240100502 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Discovery Early Career Researcher Award
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
- 批准号:
2339711 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分学习
- 批准号:
DP240102050 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Discovery Projects
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
- 批准号:
BB/Y008898/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant