Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations

随机场的内在复杂性及其与随机矩阵和随机微分方程的联系

基本信息

  • 批准号:
    2048877
  • 负责人:
  • 金额:
    $ 2.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Scientific computing together with effective use of data plays a more and more important role in many science and engineering applications. Modeling and understanding uncertainty or randomness inherited in these application is of utmost importance. Random fields are commonly used for modeling of space (or time) dependent stochastic processes in science and engineering problems, such as image and signal processing, Bayesian inference, data analysis, uncertainty quantification, and many other applications. It has the flexibility and generality to model randomness with spatial structures or vice versa. This project will characterize the intrinsic complexity of a random field.For the purpose of analysis as well as modeling and computation in practice, a separable representation or approximation of a random field in the form of separating deterministic and stochastic variables is very useful. This project will characterize the intrinsic complexity of a random field by providing accurate and computable lower bounds on the number of terms needed in a separable approximation of a random field for a given accuracy. This characterization can be related to the well-known notion of Kolmogorov n-width in information theory. It can reveal the intrinsic degrees of freedom (or richness) of a random field. It is also useful for an estimation of the intrinsic complexity of a system that is modeled upon a random field in real applications. For example, the investigator will study the intrinsic complexity of the solution space for partial differential equations that involve random material properties and develop efficient numerical methods that can explore low dimensional structures in these systems. By regarding a set of random vectors as the discrete sampling of a random field and vice versa, the investigator will also study the question of random vector embedding and explore its connections to random matrix theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学计算与数据的有效利用在许多科学和工程应用中发挥着越来越重要的作用。建模和理解这些应用中继承的不确定性或随机性是至关重要的。随机场通常用于建模空间(或时间)依赖的随机过程在科学和工程问题,如图像和信号处理,贝叶斯推理,数据分析,不确定性量化,和许多其他应用。它具有灵活性和通用性,可以对空间结构的随机性进行建模,反之亦然。该项目将描述随机场的内在复杂性,为了分析以及实际建模和计算的目的,以分离确定性和随机变量的形式对随机场进行可分离的表示或近似是非常有用的。这个项目将通过提供一个给定精度的随机场的可分离近似所需的项的数量的精确和可计算的下限来表征随机场的内在复杂性。这个特征可以与信息论中著名的Kolmogorov n宽度概念联系起来。它可以揭示随机场的内在自由度(或丰富度)。它也是有用的估计固有的复杂性的一个系统,在真实的应用程序的随机场建模。例如,研究人员将研究涉及随机材料特性的偏微分方程的解空间的内在复杂性,并开发有效的数值方法,可以探索这些系统中的低维结构。 通过将一组随机向量视为随机场的离散采样,反之亦然,研究人员还将研究随机向量嵌入问题,并探索其与随机矩阵理论的联系。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Marchenko–Pastur law with relaxed independence conditions
  • DOI:
    10.1142/s2010326321500404
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jennifer Bryson;R. Vershynin;Hongkai Zhao
  • 通讯作者:
    Jennifer Bryson;R. Vershynin;Hongkai Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong-Kai Zhao其他文献

Hong-Kai Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong-Kai Zhao', 18)}}的其他基金

Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
  • 批准号:
    2309551
  • 财政年份:
    2023
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Continuing Grant
Computational Forward and Inverse Radiative Transfer
计算正向和反向辐射传输
  • 批准号:
    2012860
  • 财政年份:
    2020
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Standard Grant
Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations
随机场的内在复杂性及其与随机矩阵和随机微分方程的联系
  • 批准号:
    1821010
  • 财政年份:
    2018
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Standard Grant
Shape and data analysis using computational differential geometry
使用计算微分几何进行形状和数据分析
  • 批准号:
    1418422
  • 财政年份:
    2014
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Standard Grant
A new approximation for effective Hamiltonians
有效哈密顿量的新近似
  • 批准号:
    1115698
  • 财政年份:
    2011
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Continuing Grant
The Fast Sweeping Method and Its Applications
快速扫掠方法及其应用
  • 批准号:
    0811254
  • 财政年份:
    2008
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Standard Grant
Efficient Numerical Methods For Material Transport On Moving Interfaces And Hamilton Jacobi Equations
移动界面上物质传输的有效数值方法和哈密顿雅可比方程
  • 批准号:
    0513073
  • 财政年份:
    2005
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Standard Grant
Applications of Variational Level Set Methods to Some Multiphase Problems
变分水平集方法在一些多相问题中的应用
  • 批准号:
    9706566
  • 财政年份:
    1997
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Standard Grant

相似海外基金

Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Fellowship
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Standard Grant
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Continuing Grant
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
  • 批准号:
    DE240100502
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Discovery Early Career Researcher Award
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/Y00390X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Fellowship
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
  • 批准号:
    23K23857
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
  • 批准号:
    2339711
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Continuing Grant
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Fellowship
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分​​学习
  • 批准号:
    DP240102050
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Discovery Projects
Building Tools to Create Molecular Complexity for Next Generation Drugs
构建为下一代药物创造分子复杂性的工具
  • 批准号:
    IM240100126
  • 财政年份:
    2024
  • 资助金额:
    $ 2.6万
  • 项目类别:
    Mid-Career Industry Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了