Computational Forward and Inverse Radiative Transfer

计算正向和反向辐射传输

基本信息

  • 批准号:
    2012860
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The radiative transfer equation (RTE) is an important modeling tool with applications in biomedical imaging, clinical radiation therapy treatment planning, study of the composition and structure of atmosphere, and other fields. Because of its complicated structure, the RTE presents challenges to analysis and simulation. This research project aims at developing novel, accurate, and efficient computational methods for both forward and inverse radiative transfer problems. More generally, the insights obtained in this project are expected to provide new perspectives on solving a class of integral equations. The mathematical tools and computational algorithms under development will be disseminated broadly for advancing scientific and technological progress. Integration of research with education at different levels will provide training for computational mathematicians. Supervised research projects and seminars related to the proposed research will be available to junior/senior undergraduates and graduate students. Participation of members of underrepresented groups will be encouraged.Solutions to radiative transfer equations behave very differently in different regions/regimes. These challenges require well-designed and well-understood numerical algorithms that can take into account special properties and structures of the RTE and its solution associated with the underlying application. Although studies and developments of numerical methods for RTE based on differential and probabilistic formulations have been done, integral-formulation-based approaches are less understood and not fully developed. This project will systematically develop and analyze efficient numerical algorithms based on integral formulation and also explore a combination of integral and differential formulations. The key idea is to utilize dimension reduction, careful treatment of singularity, and the special structures of the resulting dense matrix to develop fast solvers. This research is applicable to numerical simulation of radiation hydrodynamics and modeling of wave propagation in random media.Further applications in inverse problems that are modeled by RTE, such as optical tomography, photoacoustic tomography, fluorescence imaging, etc., will be studied as well.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
辐射传递方程(RTE)是一种重要的建模工具,在生物医学成像、临床放射治疗计划、大气成分和结构研究等领域都有应用。由于RTE结构复杂,给分析和仿真带来了挑战。本研究项目旨在为正、逆辐射传输问题开发新颖、准确、高效的计算方法。更一般地说,在这个项目中获得的见解有望为解决一类积分方程提供新的视角。广泛推广正在开发的数学工具和计算算法,促进科学技术进步。将研究与不同层次的教育相结合将为计算数学家提供培训。指导下的研究项目和与拟议研究相关的研讨会将提供给大三/大四本科生和研究生。将鼓励代表性不足群体的成员参加。辐射传递方程的解在不同的区域/状态下表现得非常不同。这些挑战需要精心设计和易于理解的数值算法,这些算法可以考虑到RTE的特殊属性和结构以及与底层应用程序相关的解决方案。尽管基于微分和概率公式的RTE数值方法的研究和发展已经完成,但基于积分公式的方法却很少被理解,也没有得到充分的发展。该项目将系统地开发和分析基于积分公式的高效数值算法,并探索积分和微分公式的结合。关键思想是利用降维,仔细处理奇点,以及所得到的密集矩阵的特殊结构来开发快速求解器。本研究可应用于辐射流体力学数值模拟和随机介质中波传播的模拟。此外,还将研究RTE在光学层析成像、光声层析成像、荧光成像等反问题中的进一步应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A fast algorithm for time-dependent radiative transport equation based on integral formulation
  • DOI:
    10.4208/csiam-am.2020-0012
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongkai Zhao;Yimin Zhong
  • 通讯作者:
    Hongkai Zhao;Yimin Zhong
Quantitative PAT with simplified P N approximation
采用简化 P N 近似的定量 PAT
  • DOI:
    10.1088/1361-6420/abf318
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhao, Hongkai;Zhong, Yimin
  • 通讯作者:
    Zhong, Yimin
A data-driven and model-based accelerated Hamiltonian Monte Carlo method for Bayesian elliptic inverse problems
  • DOI:
    10.1007/s11222-023-10262-y
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Sijing Li;Cheng Zhang;Zhiwen Zhang;Hongkai Zhao
  • 通讯作者:
    Sijing Li;Cheng Zhang;Zhiwen Zhang;Hongkai Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong-Kai Zhao其他文献

Hong-Kai Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong-Kai Zhao', 18)}}的其他基金

Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
  • 批准号:
    2309551
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations
随机场的内在复杂性及其与随机矩阵和随机微分方程的联系
  • 批准号:
    2048877
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Intrinsic Complexity of Random Fields and Its Connections to Random Matrices and Stochastic Differential Equations
随机场的内在复杂性及其与随机矩阵和随机微分方程的联系
  • 批准号:
    1821010
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Shape and data analysis using computational differential geometry
使用计算微分几何进行形状和数据分析
  • 批准号:
    1418422
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
A new approximation for effective Hamiltonians
有效哈密顿量的新近似
  • 批准号:
    1115698
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
The Fast Sweeping Method and Its Applications
快速扫掠方法及其应用
  • 批准号:
    0811254
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Efficient Numerical Methods For Material Transport On Moving Interfaces And Hamilton Jacobi Equations
移动界面上物质传输的有效数值方法和哈密顿雅可比方程
  • 批准号:
    0513073
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Applications of Variational Level Set Methods to Some Multiphase Problems
变分水平集方法在一些多相问题中的应用
  • 批准号:
    9706566
  • 财政年份:
    1997
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Banach空间中Forward-Backward分裂法研究
  • 批准号:
    11901171
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Forward-Looking与Backward-Looking相结合的投资组合管理
  • 批准号:
    71471180
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
几类带有loss-carry-forward税收的风险模型的研究
  • 批准号:
    11226203
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems
职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模
  • 批准号:
    2239328
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
  • 批准号:
    2306411
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
  • 批准号:
    2313033
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
OAC Core: Toward a Rigorous and Reliable Scientific Deep Learning Framework for Forward, Inverse, and UQ Problems
OAC 核心:针对正向、逆向和 UQ 问题建立严格可靠的科学深度学习框架
  • 批准号:
    2212442
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Forward and Inverse Uncertainty Quantification of Cardiovascular Fluid-Structure Dynamics via Multi-fidelity Physics-Informed Bayesian Geometric Deep Learning
职业:通过多保真物理信息贝叶斯几何深度学习对心血管流体结构动力学进行正向和逆向不确定性量化
  • 批准号:
    2047127
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了