Collaborative Research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems

合作研究:随机系统建模和控制的高斯过程框架

基本信息

  • 批准号:
    1821240
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Quantitative models for decision making under uncertainty continue to attract intense effort across natural sciences and engineering. With the advent of ever more sophisticated models in applications, computational demands continue to outpace what is feasible and the premium on efficient numerical approaches remains high. The investigators will explore synergies between the latest machine learning techniques and control paradigms, arising in applications as diverse as finance, energy storage and security, and the epidemiological modeling of infectious diseases. The developed "smart" algorithms will deliver performance upgrades essential for using simulations in tackling large-scale/complex settings. The project will also contribute to inter-disciplinary training in mathematical sciences across undergraduate, graduate and post-doctoral levels. The investigators will investigate statistical learning techniques for modeling, analysis and control of nonlinear dynamic stochastic systems. Through developing algorithms and statistical models for complex stochastic simulators, and active learning strategies for autonomous data acquisition, the project will achieve enhanced capabilities and efficiency in mathematical analysis of dynamic random phenomena. The approach hinges on the use of high fidelity approximate Gaussian Process surrogates to adaptively allocate computing resources in order to maximize the learning rate of the input-output relationship for modeling objectives or of the input-control map for dynamic programming. By connecting stochastic simulation with machine learning and non-parametric statistics, and integrating with the computational implementation, the project will enhance knowledge discovery in large-scale simulation and optimization settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在不确定性条件下进行决策的定量模型继续吸引着自然科学和工程领域的广泛关注。随着应用中越来越复杂的模型的出现,计算需求继续超过可行的方法,有效的数值方法的溢价仍然很高。研究人员将探索最新的机器学习技术和控制范式之间的协同作用,这些技术和范式出现在金融、能源存储和安全以及传染病的流行病学建模等各种应用中。开发的“智能”算法将提供性能升级,这对于使用模拟来处理大规模/复杂的设置至关重要。该项目还将有助于跨本科生,研究生和博士后水平的数学科学的跨学科培训。研究人员将研究用于非线性动态随机系统建模,分析和控制的统计学习技术。通过开发复杂随机模拟器的算法和统计模型,以及自主数据采集的主动学习策略,该项目将提高动态随机现象数学分析的能力和效率。该方法的关键在于使用高保真近似高斯过程代理自适应地分配计算资源,以最大限度地提高学习率的输入输出关系的建模目标或输入控制图的动态规划。通过将随机模拟与机器学习和非参数统计相结合,并与计算实现相结合,该项目将增强大规模模拟和优化设置中的知识发现。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive batching for Gaussian process surrogates with application in noisy level set estimation
Evaluating Gaussian process metamodels and sequential designs for noisy level set estimation
  • DOI:
    10.1007/s11222-021-10014-w
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Xiong Lyu;M. Binois;M. Ludkovski
  • 通讯作者:
    Xiong Lyu;M. Binois;M. Ludkovski
A Machine Learning Approach to Adaptive Robust Utility Maximization and Hedging
自适应鲁棒效用最大化和对冲的机器学习方法
Large-scale local surrogate modeling of stochastic simulation experiments
  • DOI:
    10.1016/j.csda.2022.107537
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Cole;R. Gramacy;M. Ludkovski
  • 通讯作者:
    D. Cole;R. Gramacy;M. Ludkovski
Regression Monte Carlo for Impulse Control
  • DOI:
    10.5802/msia.18
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Ludkovski
  • 通讯作者:
    M. Ludkovski
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Ludkovski其他文献

Sequential tracking of a hidden Markov chain using point process observations
  • DOI:
    10.1016/j.spa.2008.09.003
  • 发表时间:
    2009-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Erhan Bayraktar;Michael Ludkovski
  • 通讯作者:
    Michael Ludkovski
Probabilistic spatiotemporal modeling of day-ahead wind power generation with input-warped Gaussian processes
具有输入扭曲高斯过程的日前风力发电概率时空建模
  • DOI:
    10.1016/j.spasta.2025.100906
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Qiqi Li;Michael Ludkovski
  • 通讯作者:
    Michael Ludkovski
Extreme day-ahead renewables scenario selection in power grid operations
电网运营中日前可再生能源极端情景选择
  • DOI:
    10.1016/j.apenergy.2025.125747
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Guillermo Terrén-Serrano;Michael Ludkovski
  • 通讯作者:
    Michael Ludkovski

Michael Ludkovski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Ludkovski', 18)}}的其他基金

Collaborative Research: Pacific Alliance for Low-Income Inclusion in Statistics & Data Science
合作研究:太平洋低收入统计联盟
  • 批准号:
    2221421
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
AMPS: Collaborative Research: Stochastic Modeling of the Power Grid
AMPS:协作研究:电网随机建模
  • 批准号:
    1736439
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
  • 批准号:
    1521743
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Conference on Stochastic Asymptotics and Applications, September 25-27, 2014
随机渐近学及其应用会议,2014 年 9 月 25-27 日
  • 批准号:
    1413574
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Sequential Quickest Detection and Identification of Multiple Co-dependent Epidemic Outbreaks
合作研究:ATD:多种相互依赖的流行病爆发的顺序最快检测和识别
  • 批准号:
    1222262
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Workshop on Financial Engineering Methods for Insurance Mathematics
保险数学金融工程方法研讨会
  • 批准号:
    0649523
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
  • 批准号:
    2243210
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
  • 批准号:
    2229408
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210811
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2152655
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2152679
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2152999
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2152998
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了