Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
基本信息
- 批准号:1821198
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on several important and challenging issues concerning complex heterogeneous data that arise from medical imaging and social networks. The major goals are to develop powerful and innovative statistical machine learning methods and tools that are able to flexibly model signal heterogeneity across images, integrate imaging data with multimodal and spatially distributed data, and tackle heterogeneity of network data. The integrated program of research and education will have significant impacts in many different fields such as biomedical studies, genomic research, environmental studies, public health research, and social and political sciences, among others. The project will also stimulate interdisciplinary research and collaboration with scientists from disparate fields.This project will lead to substantial advancement in heterogeneity learning and modeling through exploiting individual variation from the general population, and integration of multiple sources of imaging information to enhance prediction accuracy for disease diagnoses and treatment outcomes. In addition, this project develops innovative unsupervised learning methods through utilizing node covariate information for analyzing heterogeneous network data. Each component of the research plan contains a broad range of topics, from methodological and computational development to applications in real world problems. Specifically, the PIs study subject-variant scalar-on-image regression models to incorporate the heterogeneity variation for brain imaging data, multi-dimensional tensor learning methods for breast cancer imaging data, flexible Gaussian graphical models for network data, and a novel clustering framework for heterogeneous data that are linked by networks. Furthermore, the development of advanced optimization techniques, algorithms and computational technologies will be applicable to many practical problems arising from large-scale heterogeneous data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是医学成像和社交网络中出现的复杂异构数据的几个重要和具有挑战性的问题。主要目标是开发强大而创新的统计机器学习方法和工具,能够灵活地对图像之间的信号异质性进行建模,将成像数据与多模态和空间分布数据集成,并解决网络数据的异质性。研究和教育的综合计划将在许多不同的领域产生重大影响,如生物医学研究,基因组研究,环境研究,公共卫生研究,社会和政治科学等。该项目还将促进跨学科研究和来自不同领域的科学家的合作,通过利用一般人群的个体差异,以及整合多种成像信息来源,提高疾病诊断和治疗结果的预测准确性,从而在异质性学习和建模方面取得实质性进展。此外,该项目还开发了创新的无监督学习方法,通过利用节点协变量信息来分析异构网络数据。研究计划的每个组成部分都包含广泛的主题,从方法和计算发展到真实的世界问题的应用。具体而言,PI研究主题变量标量图像回归模型,以纳入大脑成像数据的异质性变化,乳腺癌成像数据的多维张量学习方法,网络数据的灵活高斯图形模型,以及由网络链接的异构数据的新聚类框架。此外,先进的优化技术,算法和计算技术的发展将适用于许多实际问题所产生的大规模异构数据。这一奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subgroup analysis based on structured mixed-effects models for longitudinal data
- DOI:10.1080/10543406.2020.1730867
- 发表时间:2020-03
- 期刊:
- 影响因子:1.1
- 作者:Juan Shen;A. Qu
- 通讯作者:Juan Shen;A. Qu
Smooth neighborhood recommender systems
- DOI:
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Ben Dai;Junhui Wang;Xiaotong Shen;A. Qu
- 通讯作者:Ben Dai;Junhui Wang;Xiaotong Shen;A. Qu
Individualized Multilayer Tensor Learning With an Application in Imaging Analysis
- DOI:10.1080/01621459.2019.1585254
- 发表时间:2019-03
- 期刊:
- 影响因子:3.7
- 作者:Xiwei Tang;Xuan Bi;A. Qu
- 通讯作者:Xiwei Tang;Xuan Bi;A. Qu
Topic Modeling on Triage Notes With Semiorthogonal Nonnegative Matrix Factorization
- DOI:10.1080/01621459.2020.1862667
- 发表时间:2020-12
- 期刊:
- 影响因子:3.7
- 作者:Yutong Li;Ruoqing Zhu;A. Qu;Han Ye;Zhankun Sun
- 通讯作者:Yutong Li;Ruoqing Zhu;A. Qu;Han Ye;Zhankun Sun
Time‐varying feature selection for longitudinal analysis
用于纵向分析的时变特征选择
- DOI:10.1002/sim.8412
- 发表时间:2019
- 期刊:
- 影响因子:2
- 作者:Xue, Lan;Shu, Xinxin;Shi, Peibei;Wu, Colin O.;Qu, Annie
- 通讯作者:Qu, Annie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annie Qu其他文献
At-harvest prediction of grey mould risk in pear fruit in long-term cold storage
- DOI:
10.1016/j.cropro.2009.01.001 - 发表时间:
2009-05-01 - 期刊:
- 影响因子:
- 作者:
Robert A. Spotts;Maryna Serdani;Kelly M. Wallis;Monika Walter;Trish Harris-Virgin;Kim Spotts;David Sugar;Chang Lin Xiao;Annie Qu - 通讯作者:
Annie Qu
Dynamic Tensor Recommender Systems
动态张量推荐系统
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yanqing Zhang;Xuan Bi;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Dynamic Tensor Recommender System
动态张量推荐系统
- DOI:
10.11159/icsta19.09 - 发表时间:
2019-08 - 期刊:
- 影响因子:6
- 作者:
Yanqing Zhang;Xuan Bi;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Imputed Factor Regression for High-dimensional Block-wise Missing Data
高维分块缺失数据的估算因子回归
- DOI:
10.5705/ss.202018.0008 - 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Yanqing Zhang;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Discussion of Fan et al.’s paper “Gaining efficiency via weighted estimators for multivariate failure time data”
- DOI:
10.1007/s11425-009-0135-2 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:1.500
- 作者:
Annie Qu;Lan Xue - 通讯作者:
Lan Xue
Annie Qu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annie Qu', 18)}}的其他基金
Collaborative Research: Integrative Heterogeneous Learning for Intensive Complex Longitudinal Data
协作研究:密集复杂纵向数据的综合异构学习
- 批准号:
2210640 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
- 批准号:
2019461 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Generative Learning on Unstructured Data with Applications to Natural Language Processing and Hyperlink Prediction
FRG:协作研究:非结构化数据的生成学习及其在自然语言处理和超链接预测中的应用
- 批准号:
1952406 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Conference on Statistical Learning and Data Science
统计学习与数据科学会议
- 批准号:
1818546 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning and Scalable Computing for Large Unstructured Data
协作研究:大型非结构化数据的新统计学习和可扩展计算
- 批准号:
1415308 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Personalized classification, moment selection, and time-varying networks for large-scale longitudinal data
大规模纵向数据的个性化分类、矩选择和时变网络
- 批准号:
1308227 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Model selection and efficient learning for high dimensional clustered data
高维聚类数据的模型选择和高效学习
- 批准号:
0906660 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
CAREER: Semiparametric and Non-Parametric Models for Correlated Data
职业:相关数据的半参数和非参数模型
- 批准号:
0902232 - 财政年份:2008
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CAREER: Semiparametric and Non-Parametric Models for Correlated Data
职业:相关数据的半参数和非参数模型
- 批准号:
0348764 - 财政年份:2004
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Semiparametric Models for Correlated Data: The Quadratic Inference Function Approach
相关数据的半参数模型:二次推理函数方法
- 批准号:
0103513 - 财政年份:2001
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant