Conference on Statistical Learning and Data Science
统计学习与数据科学会议
基本信息
- 批准号:1818546
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Columbia University will host a three-day conference on Statistical Learning and Data Science/Nonparametric Statistics, June 4-6, 2018 in New York City. The objective of the conference is to bring together researchers in statistical learning, data science and nonparametric statistics from academia, industry, and government. Statistical machine learning is widely recognized as a very active area of interdisciplinary research, closely related to statistics, optimization, and computer science. In addition, it also plays an essential role in the new important areas of data science and big data. Due to advances in technology, massive and complex data in the "big data era" are prevalent in almost every aspect of modern scientific research. It is critical to manage such huge amounts of data, and make reliable prediction and inference. Statistical machine learning techniques have developed substantial flexibility in handling such data, with a wide range of applications in diverse scientific disciplines. This conference is expected to (1) bring together researchers from different disciplines, including statistics, computer science, machine learning, engineering, and biomedical and other related research fields, to address recent development and emerging issues in statistical learning, data science and nonparametric statistics, (2) promote interactions and collaborations among researchers, (3) discuss new ideas and future research directions for statistical learning and data science, with a focus towards knowledge discovery in sciences and engineering, (4) provide an excellent opportunity for junior researchers to interact and learn from leading scientists in the field. The conference will consist of three plenary sessions, 55 invited sessions and poster sessions. Conference topics include unsupervised, semi-supervised and supervised learning, with applications in rankings, text and web mining, network analysis, bioinformatics, high-dimensional data, functional data, genomics, drug discovery, intrusion and fraud detection. NSF funding will provide travel support to students, post-doctoral scholars, and early-career researchers to encourage their participation in this event. The conference website is https://publish.illinois.edu/sldsc2018/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
哥伦比亚大学将于2018年6月4日至6日在纽约市举办为期三天的统计学习和数据科学/非参数统计会议。会议的目的是汇集来自学术界、工业界和政府的统计学习、数据科学和非参数统计学研究人员。统计机器学习被广泛认为是一个非常活跃的跨学科研究领域,与统计学、优化和计算机科学密切相关。此外,它还在数据科学和大数据等新的重要领域发挥着至关重要的作用。由于技术的进步,“大数据时代”的海量复杂数据几乎普遍存在于现代科学研究的各个方面。管理如此大量的数据,并做出可靠的预测和推理至关重要。统计机器学习技术在处理这些数据方面具有很大的灵活性,在不同的科学学科中具有广泛的应用。本次会议预计将(1)汇集来自不同学科的研究人员,包括统计学,计算机科学,机器学习,工程学,生物医学和其他相关研究领域,以解决统计学习,数据科学和非参数统计的最新发展和新出现的问题,(2)促进研究人员之间的互动和合作,(3)讨论统计学习和数据科学的新思想和未来研究方向,重点是科学和工程中的知识发现,(4)为初级研究人员提供与该领域领先科学家互动和学习的绝佳机会。会议将包括三个全体会议,55个邀请会议和海报会议。会议主题包括无监督,半监督和监督学习,应用于排名,文本和Web挖掘,网络分析,生物信息学,高维数据,功能数据,基因组学,药物发现,入侵和欺诈检测。NSF资助将为学生,博士后学者和早期职业研究人员提供旅行支持,以鼓励他们参与这项活动。会议网站是https://publish.illinois.edu/sldsc2018/.This奖反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annie Qu其他文献
At-harvest prediction of grey mould risk in pear fruit in long-term cold storage
- DOI:
10.1016/j.cropro.2009.01.001 - 发表时间:
2009-05-01 - 期刊:
- 影响因子:
- 作者:
Robert A. Spotts;Maryna Serdani;Kelly M. Wallis;Monika Walter;Trish Harris-Virgin;Kim Spotts;David Sugar;Chang Lin Xiao;Annie Qu - 通讯作者:
Annie Qu
Dynamic Tensor Recommender Systems
动态张量推荐系统
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yanqing Zhang;Xuan Bi;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Dynamic Tensor Recommender System
动态张量推荐系统
- DOI:
10.11159/icsta19.09 - 发表时间:
2019-08 - 期刊:
- 影响因子:6
- 作者:
Yanqing Zhang;Xuan Bi;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Imputed Factor Regression for High-dimensional Block-wise Missing Data
高维分块缺失数据的估算因子回归
- DOI:
10.5705/ss.202018.0008 - 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Yanqing Zhang;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Discussion of Fan et al.’s paper “Gaining efficiency via weighted estimators for multivariate failure time data”
- DOI:
10.1007/s11425-009-0135-2 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:1.500
- 作者:
Annie Qu;Lan Xue - 通讯作者:
Lan Xue
Annie Qu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annie Qu', 18)}}的其他基金
Collaborative Research: Integrative Heterogeneous Learning for Intensive Complex Longitudinal Data
协作研究:密集复杂纵向数据的综合异构学习
- 批准号:
2210640 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
- 批准号:
2019461 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Generative Learning on Unstructured Data with Applications to Natural Language Processing and Hyperlink Prediction
FRG:协作研究:非结构化数据的生成学习及其在自然语言处理和超链接预测中的应用
- 批准号:
1952406 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
- 批准号:
1821198 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning and Scalable Computing for Large Unstructured Data
协作研究:大型非结构化数据的新统计学习和可扩展计算
- 批准号:
1415308 - 财政年份:2014
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Personalized classification, moment selection, and time-varying networks for large-scale longitudinal data
大规模纵向数据的个性化分类、矩选择和时变网络
- 批准号:
1308227 - 财政年份:2013
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Model selection and efficient learning for high dimensional clustered data
高维聚类数据的模型选择和高效学习
- 批准号:
0906660 - 财政年份:2009
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
CAREER: Semiparametric and Non-Parametric Models for Correlated Data
职业:相关数据的半参数和非参数模型
- 批准号:
0902232 - 财政年份:2008
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
CAREER: Semiparametric and Non-Parametric Models for Correlated Data
职业:相关数据的半参数和非参数模型
- 批准号:
0348764 - 财政年份:2004
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Semiparametric Models for Correlated Data: The Quadratic Inference Function Approach
相关数据的半参数模型:二次推理函数方法
- 批准号:
0103513 - 财政年份:2001
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似海外基金
Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
- 批准号:
2342215 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
- 批准号:
2340241 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
- 批准号:
495410 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886365 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886852 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Studentship
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Doctoral Dissertation Research: The Effects of Language Experience on Statistical Learning in Infants and Adults
博士论文研究:语言体验对婴儿和成人统计学习的影响
- 批准号:
2234422 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant