Personalized classification, moment selection, and time-varying networks for large-scale longitudinal data
大规模纵向数据的个性化分类、矩选择和时变网络
基本信息
- 批准号:1308227
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to develop new statistical theory, methods and computing algorithms to solve real world problems where the data present unique features such as large volume, large variety and large velocity of change. Traditional methods relying on parametric likelihood functions are no longer feasible for high-dimensional longitudinal data. The PI and her students intend to develop personalized classification strategies for subjects with high heterogeneity variation, and propose to identify subgroups from longitudinal observations through nonparametric random effects estimation. The proposed research also intends to select and optimally combine high-dimensional moment conditions to reduce the dimensionality of large numbers of moment conditions, while retaining the important information from the data to achieve estimation efficiency. In addition, a time-varying network model will be proposed to address dynamic changes of network structures using flexible nonparametric modeling. The proposal also seeks to develop highly efficient computational algorithms for solving optimization problems which involve high-dimensional parameter estimations and matrix operations. The proposed research project will help to tackle fundamental questions in statistical science and will stimulate interest from a large group of scientists in the fields of longitudinal/correlated data analysis, classification, random effects modeling, moment selection, low rank approximation, and time-varying networks for high-dimensional correlated data.The proposed research topics have many important applications in the biomedical sciences, genomics, environmental sciences, and economics. For example, the personalized classification method is applicable for personalized medicine, where individuals with different biomarkers can receive different medical interventions to get more effective treatment. The time-varying network model is powerful for identifying time-evolving network associations for brain and biological functions, social interaction, and environmental influence over time. In addition, the moment selection method is applicable for panel data in econometrics applications. The PI will integrate the proposed research areas substantially into educational activities through development of new topic courses. The research will also significantly advance undergraduate and graduate students' learning and training.
本研究项目旨在发展新的统计理论、方法和计算算法,以解决真实的世界问题,这些问题具有数据量大、种类多、变化速度快等特点。传统的方法依赖于参数似然函数不再是可行的高维纵向数据。PI和她的学生打算为具有高度异质性变化的受试者制定个性化的分类策略,并建议通过非参数随机效应估计从纵向观察中识别亚组。 本研究亦尝试选取并最佳化联合收割机的高维矩条件,以降低大量矩条件的维数,同时保留数据中的重要资讯,以达到估计效率。 此外,一个随时间变化的网络模型将提出使用灵活的非参数建模来解决网络结构的动态变化。该提案还寻求开发高效的计算算法,用于解决涉及高维参数估计和矩阵运算的优化问题。该研究项目将有助于解决统计科学中的基本问题,并将激发大量科学家对纵向/相关数据分析、分类、随机效应建模、矩选择、低秩近似和高维相关数据的时变网络等领域的兴趣。拟议的研究课题在生物医学科学、基因组学、环境科学和经济学。例如,个性化分类方法适用于个性化医疗,其中具有不同生物标志物的个体可以接受不同的医疗干预以获得更有效的治疗。时变网络模型对于识别大脑和生物功能、社会互动和环境影响随时间变化的网络关联是强大的。此外,矩选择方法也适用于计量经济学中的面板数据。PI将通过开发新的主题课程,将拟议的研究领域实质上融入教育活动。这项研究还将大大促进本科生和研究生的学习和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annie Qu其他文献
At-harvest prediction of grey mould risk in pear fruit in long-term cold storage
- DOI:
10.1016/j.cropro.2009.01.001 - 发表时间:
2009-05-01 - 期刊:
- 影响因子:
- 作者:
Robert A. Spotts;Maryna Serdani;Kelly M. Wallis;Monika Walter;Trish Harris-Virgin;Kim Spotts;David Sugar;Chang Lin Xiao;Annie Qu - 通讯作者:
Annie Qu
Dynamic Tensor Recommender Systems
动态张量推荐系统
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yanqing Zhang;Xuan Bi;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Dynamic Tensor Recommender System
动态张量推荐系统
- DOI:
10.11159/icsta19.09 - 发表时间:
2019-08 - 期刊:
- 影响因子:6
- 作者:
Yanqing Zhang;Xuan Bi;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Imputed Factor Regression for High-dimensional Block-wise Missing Data
高维分块缺失数据的估算因子回归
- DOI:
10.5705/ss.202018.0008 - 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Yanqing Zhang;Niansheng Tang;Annie Qu - 通讯作者:
Annie Qu
Discussion of Fan et al.’s paper “Gaining efficiency via weighted estimators for multivariate failure time data”
- DOI:
10.1007/s11425-009-0135-2 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:1.500
- 作者:
Annie Qu;Lan Xue - 通讯作者:
Lan Xue
Annie Qu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annie Qu', 18)}}的其他基金
Collaborative Research: Integrative Heterogeneous Learning for Intensive Complex Longitudinal Data
协作研究:密集复杂纵向数据的综合异构学习
- 批准号:
2210640 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
- 批准号:
2019461 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Generative Learning on Unstructured Data with Applications to Natural Language Processing and Hyperlink Prediction
FRG:协作研究:非结构化数据的生成学习及其在自然语言处理和超链接预测中的应用
- 批准号:
1952406 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Conference on Statistical Learning and Data Science
统计学习与数据科学会议
- 批准号:
1818546 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
- 批准号:
1821198 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning and Scalable Computing for Large Unstructured Data
协作研究:大型非结构化数据的新统计学习和可扩展计算
- 批准号:
1415308 - 财政年份:2014
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Model selection and efficient learning for high dimensional clustered data
高维聚类数据的模型选择和高效学习
- 批准号:
0906660 - 财政年份:2009
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CAREER: Semiparametric and Non-Parametric Models for Correlated Data
职业:相关数据的半参数和非参数模型
- 批准号:
0902232 - 财政年份:2008
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
CAREER: Semiparametric and Non-Parametric Models for Correlated Data
职业:相关数据的半参数和非参数模型
- 批准号:
0348764 - 财政年份:2004
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Semiparametric Models for Correlated Data: The Quadratic Inference Function Approach
相关数据的半参数模型:二次推理函数方法
- 批准号:
0103513 - 财政年份:2001
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
基于传孢类型藓类植物系统的修订
- 批准号:30970188
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Fellowship Award
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
- 批准号:
ES/Z50273X/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
- 批准号:
EP/Y001613/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
Classification of contemporary Kansai dialects
当代关西方言的分类
- 批准号:
24K03842 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
- 批准号:
2905969 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Studentship
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
- 批准号:
BB/Y514007/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant