Theory-Driven Solutions to Robust and Non-Convex Data Science Problems

稳健和非凸数据科学问题的理论驱动解决方案

基本信息

  • 批准号:
    1821266
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Many solutions to data science problems are based on non-convex optimization. Recent surprising theoretical and empirical results have shown that directly solving non-convex problems can yield computationally efficient, high-accuracy algorithms. This has spurred the expanding body of work on the analysis of non-convex algorithms for a variety of structured data problems. One class of these is robust recovery problems, which aim to recover a hidden structure in corrupted data. While robustness is a classical theme in mathematical statistics, computationally efficient methods with guaranteed accuracy for high levels of corruption have not been widely studied. Non-convex minimization methods indicate the potential to obtain competitive speed and accuracy for such problems, as was already demonstrated by the PI and his collaborators on the problem of robust subspace recovery. The research work aims to further establish and extend such guarantees to many other robust recovery problems whose solutions are crucial for modern applied problems. Applications include the problem of three-dimensional reconstruction from a set of two-dimensional images. The PI and his collaborators aim to develop robust theory and algorithms for truly challenging non-convex recovery problems. These recovery problems are typically NP-hard with highly complex energy landscapes. However, these landscapes often exhibit special structure that seems to allow for recovery under certain adversarial settings and recovery with high probability under certain generative models. For some of the problems of outlier-robust optimization over special, continuous non-convex sets, the PI and his collaborators aim to establish that the corresponding non-convex energy landscapes are "well-tempered" under some generic conditions. This implies that, under these conditions, one may apply an iterative scheme initialized at a pre-specified point and guarantee its fast convergence to the global minimum of the energy landscape. In other challenging discrete settings, "multi-valley" landscapes are observed. In this case, special structures and phase transitions will be quantified. The PI and his collaborators plan to apply their theory-driven, non-convex optimization solutions in order to solve several applied scientific problems, in particular, problems that arise in the current pipeline of structure from motion in computer vision.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据科学问题的许多解决方案都是基于非凸优化的。最近令人惊讶的理论和经验结果表明,直接求解非凸问题可以产生计算效率高,精度高的算法。 这刺激了对各种结构化数据问题的非凸算法的分析工作的不断扩大。其中一类是鲁棒恢复问题,其目的是恢复损坏数据中的隐藏结构。虽然鲁棒性是数理统计中的经典主题,但对于高水平腐败具有保证准确性的计算效率方法尚未得到广泛研究。非凸最小化方法表明有可能获得有竞争力的速度和准确性,这样的问题,已经证明了PI和他的合作者对鲁棒子空间恢复的问题。研究工作的目的是进一步建立和扩展这样的保证,许多其他强大的恢复问题,其解决方案是现代应用问题的关键。应用包括从一组二维图像的三维重建的问题。PI和他的合作者旨在为真正具有挑战性的非凸恢复问题开发强大的理论和算法。这些恢复问题通常是NP-难的高度复杂的能源景观。然而,这些景观往往表现出特殊的结构,似乎允许在某些对抗性环境下恢复,并在某些生成模型下以高概率恢复。对于一些特殊的连续非凸集上的离群鲁棒优化问题,PI和他的合作者的目标是建立相应的非凸能量景观在某些一般条件下是“良好的”。这意味着,在这些条件下,可以应用在预先指定的点初始化的迭代方案,并保证其快速收敛到能量景观的全局最小值。在其他具有挑战性的离散设置中,观察到"多谷"景观。在这种情况下,特殊的结构和相变将被量化。PI和他的合作者计划应用他们的理论驱动的非凸优化解决方案,以解决几个应用科学问题,特别是在当前计算机视觉中从运动到结构的管道中出现的问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Message Passing Least Squares Framework and its Application to Rotation Synchronization
  • DOI:
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunpeng Shi;Gilad Lerman
  • 通讯作者:
    Yunpeng Shi;Gilad Lerman
Phase transition in random tensors with multiple independent spikes
具有多个独立尖峰的随机张量的相变
  • DOI:
    10.1214/20-aap1636
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Wei-Kuo;Handschy, Madeline;Lerman, Gilad
  • 通讯作者:
    Lerman, Gilad
Robust sparse covariance estimation by thresholding Tyler’s M-estimator
通过阈值泰勒 M 估计器进行鲁棒稀疏协方差估计
  • DOI:
    10.1214/18-aos1793
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goes, John;Lerman, Gilad;Nadler, Boaz
  • 通讯作者:
    Nadler, Boaz
A Well-Tempered Landscape for Non-convex Robust Subspace Recovery
  • DOI:
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyler Maunu;Teng Zhang;Gilad Lerman
  • 通讯作者:
    Tyler Maunu;Teng Zhang;Gilad Lerman
Robust Group Synchronization via Cycle-Edge Message Passing
通过循环边缘消息传递实现稳健的组同步
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gilad Lerman其他文献

Estimation of Camera Locations in Highly Corrupted Scenarios: All About that Base, No Shape Trouble
高度损坏场景中摄像机位置的估计:一切都围绕该底座,没有形状问题
Phase transition in random tensors with multiple spikes
具有多个尖峰的随机张量的相变
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei;Madeline Handschy;Gilad Lerman
  • 通讯作者:
    Gilad Lerman
Analysis and algorithms for emℓ/emsubemp/em/sub-based semi-supervised learning on graphs
基于 emℓ/emsubemp/em/sub 的图上半监督学习的分析与算法
$${l_p}$$ -Recovery of the Most Significant Subspace Among Multiple Subspaces with Outliers
  • DOI:
    10.1007/s00365-014-9242-6
  • 发表时间:
    2014-07-03
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Gilad Lerman;Teng Zhang
  • 通讯作者:
    Teng Zhang
Topological Data Analysis and Machine Learning Theory
拓扑数据分析和机器学习理论
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Carlsson;Rick Jardine;Dmitry Feichtner;D. Morozov;D. Attali;A. Bak;M. Belkin;Peter Bubenik;Brittany Terese Fasy;Jesse Johnson;Matthew Kahle;Gilad Lerman;Sayan Mukherjee;Monica Nicolau;A. Patel;Yusu Wang
  • 通讯作者:
    Yusu Wang

Gilad Lerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gilad Lerman', 18)}}的其他基金

Mathematically-Guaranteed Global Solutions to Structure-from-Motion
数学保证的运动结构全局解决方案
  • 批准号:
    2152766
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
ATD: Robustness, Privacy, and Fairness in Threat Detection
ATD:威胁检测中的稳健性、隐私性和公平性
  • 批准号:
    2124913
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Threat Detection Problems in Precision Agriculture and Satellite Imaging
ATD:精准农业和卫星成像中的威胁检测问题
  • 批准号:
    1830418
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Novel Paradigms in Geometric Modeling of Large and High-Dimensional Data Sets
大型高维数据集几何建模的新范式
  • 批准号:
    1418386
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: New Paradigms in Geometric Analysis of Data Sets and their Applications
职业:数据集几何分析的新范式及其应用
  • 批准号:
    0956072
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-manifold data modeling: theory, algorithms and applications
协作研究:多流形数据建模:理论、算法和应用
  • 批准号:
    0915064
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Computational Methods for Exploring the Geometry of Large Data Sets
探索大数据集几何的计算方法
  • 批准号:
    0612608
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

RII Track-2 FEC: Community-Driven Coastal Climate Research & Solutions for the Resilience of New England Coastal Populations
RII Track-2 FEC:社区驱动的沿海气候研究
  • 批准号:
    2316271
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
  • 批准号:
    2312326
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Nimble Artificial Intelligence Driven Robotic Solutions for Efficient and Self-Determined Handling and Assembly Operations
灵活的人工智能驱动的机器人解决方案,可实现高效、自主的搬运和装配操作
  • 批准号:
    10048288
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    EU-Funded
Enabling In-Clinic Orthodontic Treatment Solutions with Advanced AI-Driven Digital Decision Support Systems and Novel Manufacturing Approaches
通过先进的人工智能驱动的数字决策支持系统和新颖的制造方法实现临床正畸治疗解决方案
  • 批准号:
    10068611
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative R&D
INTERACT's Healthy City Solutions Summit: Tapping into community knowledge for equity-driven research and planning
INTERACT 的健康城市解决方案峰会:利用社区知识进行公平驱动的研究和规划
  • 批准号:
    480760
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Miscellaneous Programs
Business-driven systemic solutions for sustainable plastic packaging reuse schemes in mass market applications
大众市场应用中可持续塑料包装再利用方案的业务驱动系统解决方案
  • 批准号:
    10038702
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    EU-Funded
The ReBuild Initiative - A nexus for research into data-driven retrofit solutions for energy-efficient buildings
重建计划 - 研究数据驱动的节能建筑改造解决方案的纽带
  • 批准号:
    566285-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Alliance Grants
DATA-DRIVEN INTEGRATED TRANSPORT SOLUTIONS - USING PERSONAS IN POLICY-MAKING
数据驱动的集成交通解决方案 - 在政策制定中使用人物角色
  • 批准号:
    2763665
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Data-driven solutions to improving cancer diagnosis
改善癌症诊断的数据驱动解决方案
  • 批准号:
    2751434
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
BUDDIE-PACK: Business-driven systemic solutions for sustainable plastic packaging reuse schemes in mass market applications
BUDDIE-PACK:面向大众市场应用的可持续塑料包装再利用方案的业务驱动系统解决方案
  • 批准号:
    10039041
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了