ATD: Threat Detection Problems in Precision Agriculture and Satellite Imaging
ATD:精准农业和卫星成像中的威胁检测问题
基本信息
- 批准号:1830418
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores possible techniques for threat detection by leveraging research into related unsolved problems in precision agriculture and satellite imaging. Some of these problems are currently solved in a laboratory setting but do not have satisfying solutions in the practical setting of remote sensing. In addition to security benefits, the research has the potential to save growers money and reduce the environmental impact of agriculture by applying only the inputs that are needed only when and where they are needed. The project's contributions to satellite imaging and measurement would also enhance environmental monitoring. Efficient remote sensing would enable accurate threat detection from minimal amounts of data, while increasing the life span of scanners and reducing associated costs.This project aims to develop crucial methods for the data cleaning and processing necessary to ensure meaningful results in aerial and satellite imagery. For example, the investigators will explore a careful and novel approach to cloud removal in satellite images. A new approach is necessary since the measurement of vegetation indices, which help identify various threats to crops, becomes unreliable in the presence of shadows introduced by clouds. The investigator and collaborators will also address the technical problem of image stitching, or solving large puzzles, for agricultural fields. The difficulty here is that patches are very similar to each other and sometimes have very little overlap. Other technical problems to be studied are super-resolution and inpainting in non-uniform settings. Once these technical problems are solved, the investigators plan to adapt and further develop techniques for threat detection, in particular, techniques for multivariate change point detection. Robust threat detection in agriculture will also help to optimize crop yield while minimizing resources. Thus, advances in threat detection capabilities in these domains broadly impact society even beyond their intrinsic usefulness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过利用对精确农业和卫星成像中相关未解决问题的研究,探索可能的威胁检测技术。这些问题中的一些目前在实验室环境中得到解决,但在遥感的实际环境中没有令人满意的解决方案。除了安全方面的好处外,这项研究还可以节省种植者的资金,并通过只在需要的时候和地方使用所需的投入来减少农业对环境的影响。该项目对卫星成像和测量的贡献还将加强环境监测。高效率的遥感将能够从最少量的数据中准确地探测威胁,同时延长扫描仪的使用寿命并降低相关费用,该项目旨在开发必要的数据清理和处理的关键方法,以确保航空和卫星图像产生有意义的结果。例如,研究人员将探索一种仔细而新颖的方法来去除卫星图像中的云。有必要采用一种新的方法,因为测量植被指数有助于确定对农作物的各种威胁,但在云层造成阴影的情况下,这种方法变得不可靠。研究人员和合作者还将解决图像拼接的技术问题,或解决农业领域的大型难题。这里的困难在于,斑块彼此非常相似,有时几乎没有重叠。其他有待研究的技术问题是超分辨率和非均匀设置中的修复。一旦这些技术问题得到解决,研究人员计划调整和进一步开发威胁检测技术,特别是多变量变化点检测技术。农业中强大的威胁检测也将有助于优化作物产量,同时最大限度地减少资源。因此,在这些领域的威胁检测能力的进步,广泛影响社会,甚至超出其内在的用处。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Subspace Recovery Layer for Unsupervised Anomaly Detection
- DOI:
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Chieh-Hsin Lai;Dongmian Zou;Gilad Lerman
- 通讯作者:Chieh-Hsin Lai;Dongmian Zou;Gilad Lerman
Encoding robust representation for graph generation
- DOI:10.1109/ijcnn.2019.8851705
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Dongmian Zou;Gilad Lerman
- 通讯作者:Dongmian Zou;Gilad Lerman
Graph Convolutional Neural Networks via Scattering
- DOI:10.1016/j.acha.2019.06.003
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Dongmian Zou;Gilad Lerman
- 通讯作者:Dongmian Zou;Gilad Lerman
Regularized variational data assimilation for bias treatment using the Wasserstein metric
使用 Wasserstein 度量进行偏差处理的正则化变分数据同化
- DOI:10.1002/qj.3794
- 发表时间:2020
- 期刊:
- 影响因子:8.9
- 作者:Tamang, Sagar K.;Ebtehaj, Ardeshir;Zou, Dongmian;Lerman, Gilad
- 通讯作者:Lerman, Gilad
Solving Jigsaw Puzzles By the Graph Connection Laplacian
- DOI:10.1137/19m1290760
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Vahan Huroyan;Gilad Lerman;Hau‐Tieng Wu
- 通讯作者:Vahan Huroyan;Gilad Lerman;Hau‐Tieng Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilad Lerman其他文献
Estimation of Camera Locations in Highly Corrupted Scenarios: All About that Base, No Shape Trouble
高度损坏场景中摄像机位置的估计:一切都围绕该底座,没有形状问题
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yunpeng Shi;Gilad Lerman - 通讯作者:
Gilad Lerman
Phase transition in random tensors with multiple spikes
具有多个尖峰的随机张量的相变
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wei;Madeline Handschy;Gilad Lerman - 通讯作者:
Gilad Lerman
Analysis and algorithms for emℓ/emsubemp/em/sub-based semi-supervised learning on graphs
基于 emℓ/emsubemp/em/sub 的图上半监督学习的分析与算法
- DOI:
10.1016/j.acha.2022.01.004 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:3.200
- 作者:
Mauricio Flores;Jeff Calder;Gilad Lerman - 通讯作者:
Gilad Lerman
$${l_p}$$ -Recovery of the Most Significant Subspace Among Multiple Subspaces with Outliers
- DOI:
10.1007/s00365-014-9242-6 - 发表时间:
2014-07-03 - 期刊:
- 影响因子:1.200
- 作者:
Gilad Lerman;Teng Zhang - 通讯作者:
Teng Zhang
Topological Data Analysis and Machine Learning Theory
拓扑数据分析和机器学习理论
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
G. Carlsson;Rick Jardine;Dmitry Feichtner;D. Morozov;D. Attali;A. Bak;M. Belkin;Peter Bubenik;Brittany Terese Fasy;Jesse Johnson;Matthew Kahle;Gilad Lerman;Sayan Mukherjee;Monica Nicolau;A. Patel;Yusu Wang - 通讯作者:
Yusu Wang
Gilad Lerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilad Lerman', 18)}}的其他基金
Mathematically-Guaranteed Global Solutions to Structure-from-Motion
数学保证的运动结构全局解决方案
- 批准号:
2152766 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
ATD: Robustness, Privacy, and Fairness in Threat Detection
ATD:威胁检测中的稳健性、隐私性和公平性
- 批准号:
2124913 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Theory-Driven Solutions to Robust and Non-Convex Data Science Problems
稳健和非凸数据科学问题的理论驱动解决方案
- 批准号:
1821266 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Novel Paradigms in Geometric Modeling of Large and High-Dimensional Data Sets
大型高维数据集几何建模的新范式
- 批准号:
1418386 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: New Paradigms in Geometric Analysis of Data Sets and their Applications
职业:数据集几何分析的新范式及其应用
- 批准号:
0956072 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Multi-manifold data modeling: theory, algorithms and applications
协作研究:多流形数据建模:理论、算法和应用
- 批准号:
0915064 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Computational Methods for Exploring the Geometry of Large Data Sets
探索大数据集几何的计算方法
- 批准号:
0612608 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
- 批准号:
2220373 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: Quantum algorithms for spatiotemporal models with applications to threat detection
ATD:时空模型的量子算法及其在威胁检测中的应用
- 批准号:
2319279 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: Anomaly detection and functional data analysis with applications to threat detection for multimodal satellite data
ATD:异常检测和功能数据分析以及多模式卫星数据威胁检测的应用
- 批准号:
2319011 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: Algorithmic Threat Detection and Mitigation with Robust Machine Learning
ATD:利用强大的机器学习进行算法威胁检测和缓解
- 批准号:
2027737 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: Robustness, Privacy, and Fairness in Threat Detection
ATD:威胁检测中的稳健性、隐私性和公平性
- 批准号:
2124913 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: Threat Detection Based on Simultaneous Monitoring of Complex Signals from Multiple Sources
ATD:基于同时监控多源复杂信号的威胁检测
- 批准号:
2123761 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: Global Terrorism Threat Detection by Nonstationary, Spatio-Temporal Hawkes Process Models
ATD:通过非平稳时空霍克斯过程模型进行全球恐怖主义威胁检测
- 批准号:
2105847 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ATD: Algorithms for Threat Detection in Knowledge Graphs
ATD:知识图中的威胁检测算法
- 批准号:
2027277 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant