Novel Paradigms in Geometric Modeling of Large and High-Dimensional Data Sets

大型高维数据集几何建模的新范式

基本信息

  • 批准号:
    1418386
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator and his collaborators aim to develop effective data modeling paradigms that are sufficiently simple for statistical inference. Current scientific investigations, as well as industrial applications, produce and rely on massive, high-dimensional and possibly corrupted data sets. A major focus of applied mathematicians and statisticians in this area has been on quantitative geometric data modeling. In order to effectively analyze large data and obtain meaningful statistical inference, the underlying geometric models need to be sufficiently simple. The proposal suggests mathematical paradigms for such effective geometric models. It plans to develop rigorous mathematical theory for these paradigms combined with carefully designed numerical strategies addressing specific and important applications. Despite the recent progress in this area, there are many open directions, several of which this research project addresses.More specifically, the proposal focuses on several important directions of geometric data modeling. One direction aims to address modern issues in single robust subspace modeling with respect to new paradigms of learning and computation that have hardly been addressed so far in this setting. Another direction will explore important issues in modeling data by multiple subspaces or manifolds with new paradigms and perspectives. The proposal will also emphasize specific paradigms of low-rank and sparse modeling, which are induced by important applications, such as approximate nearest subspace for object recognition, improved feature tracking, structure from motion in computer vision, and sparse modeling in the atmospheric sciences.
主要研究者和他的合作者旨在开发有效的数据建模范式,这些范式对于统计推断来说足够简单。当前的科学研究以及工业应用产生并依赖于大量、高维和可能损坏的数据集。应用数学家和统计学家在这一领域的一个主要重点是定量几何数据建模。为了有效地分析大数据并获得有意义的统计推断,底层几何模型需要足够简单。该提案提出了这种有效的几何模型的数学范式。它计划为这些范例开发严格的数学理论,并结合精心设计的数字策略来解决具体和重要的应用。尽管最近在这一领域取得了进展,有许多开放的方向,其中一些研究项目地址。更具体地说,该提案集中在几何数据建模的几个重要方向。一个方向的目的是解决现代问题,在单一的强大的子空间建模的学习和计算的新范式,几乎没有解决到目前为止,在这个设置。另一个方向将探索通过多个子空间或流形以新的范式和视角建模数据的重要问题。该提案还将强调低秩和稀疏建模的特定范例,这些范例由重要应用引起,例如用于对象识别的近似最近子空间,改进的特征跟踪,计算机视觉中的运动结构,以及大气科学中的稀疏建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gilad Lerman其他文献

Estimation of Camera Locations in Highly Corrupted Scenarios: All About that Base, No Shape Trouble
高度损坏场景中摄像机位置的估计:一切都围绕该底座,没有形状问题
Phase transition in random tensors with multiple spikes
具有多个尖峰的随机张量的相变
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei;Madeline Handschy;Gilad Lerman
  • 通讯作者:
    Gilad Lerman
$${l_p}$$ -Recovery of the Most Significant Subspace Among Multiple Subspaces with Outliers
  • DOI:
    10.1007/s00365-014-9242-6
  • 发表时间:
    2014-07-03
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Gilad Lerman;Teng Zhang
  • 通讯作者:
    Teng Zhang
Analysis and algorithms for emℓ/emsubemp/em/sub-based semi-supervised learning on graphs
基于 emℓ/emsubemp/em/sub 的图上半监督学习的分析与算法
Topological Data Analysis and Machine Learning Theory
拓扑数据分析和机器学习理论
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Carlsson;Rick Jardine;Dmitry Feichtner;D. Morozov;D. Attali;A. Bak;M. Belkin;Peter Bubenik;Brittany Terese Fasy;Jesse Johnson;Matthew Kahle;Gilad Lerman;Sayan Mukherjee;Monica Nicolau;A. Patel;Yusu Wang
  • 通讯作者:
    Yusu Wang

Gilad Lerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gilad Lerman', 18)}}的其他基金

Mathematically-Guaranteed Global Solutions to Structure-from-Motion
数学保证的运动结构全局解决方案
  • 批准号:
    2152766
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
ATD: Robustness, Privacy, and Fairness in Threat Detection
ATD:威胁检测中的稳健性、隐私性和公平性
  • 批准号:
    2124913
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ATD: Threat Detection Problems in Precision Agriculture and Satellite Imaging
ATD:精准农业和卫星成像中的威胁检测问题
  • 批准号:
    1830418
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Theory-Driven Solutions to Robust and Non-Convex Data Science Problems
稳健和非凸数据科学问题的理论驱动解决方案
  • 批准号:
    1821266
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: New Paradigms in Geometric Analysis of Data Sets and their Applications
职业:数据集几何分析的新范式及其应用
  • 批准号:
    0956072
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-manifold data modeling: theory, algorithms and applications
协作研究:多流形数据建模:理论、算法和应用
  • 批准号:
    0915064
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Computational Methods for Exploring the Geometry of Large Data Sets
探索大数据集几何的计算方法
  • 批准号:
    0612608
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
  • 批准号:
    10912318
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Functional Characterization and Development of Therapeutic Paradigms for DNA Damage Repair (DDR)-deficient Lethal Prostate Cancer
DNA 损伤修复 (DDR) 缺陷的致死性前列腺癌的功能表征和治疗范例的开发
  • 批准号:
    10675929
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
The Cultural Roots of STEM: A Synthesis of Non-Western STEM Learning Paradigms
STEM 的文化根源:非西方 STEM 学习范式的综合
  • 批准号:
    2313979
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
An International Comparative Study of the Formation and Transformation of Paradigms in the Sociological Research of Family
家庭社会学研究范式形成与转变的国际比较研究
  • 批准号:
    23K01785
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Utility of adaptive design optimization for developing rapid and reliable behavioral paradigms for substance use disorders
利用自适应设计优化来开发快速可靠的药物滥用行为范例
  • 批准号:
    10637895
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
CAREER: Unifying Neuroscience and Biomechanics Paradigms for Modeling Brain and Muscle Responses to Mechanical Impacts
职业:统一神经科学和生物力学范式,模拟大脑和肌肉对机械冲击的反应
  • 批准号:
    2239110
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
IRES: International Paradigms for Managing Hydrologic Extremes in a Shifting Climate
IRES:气候变化中管理极端水文的国际范式
  • 批准号:
    2247036
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
  • 批准号:
    2315963
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了