Computational Methods for Exploring the Geometry of Large Data Sets
探索大数据集几何的计算方法
基本信息
- 批准号:0612608
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator and his colleagues develop computational and theoretical framework to analyze large data sets with low-dimensional intrinsic structure. More specifically, they address the following challenges: Constructions of underlying curves and surfaces in the presence of significant outliers and noise; Improvement of recent nonlinear embedding techniques for large data sets with significant noise; Analysis of large data sets generated by special nonlinear partial differential equations with low-dimensional inertial manifold. There are several important applications of the proposed research: quantitative edge detection in images, detection of nuclear devices by muon radiation, identification of protein-binding genomic regions (and even specific sites), quantitative exploration of the functional domain in the gene ontology and its relation with structural properties. The broader impacts of the proposal are as follows: 1) The mathematics suggests important applications, some of them are listed above. 2) The applications guide and demand a broad framework for multiscale geometric analysis of data sets with intrinsic low-dimensional geometric structures. 3) Interaction between different areas of mathematics, in particular, computational harmonic analysis, scientific computation, statistical learning, probability and mathematical modeling. 4) Multidisciplinary collaborations, involving applied mathematicians, biologists, computer scientists, statisticians and mathematical analysts. 5) Industrial collaborations. 6) Training of young researchers in a promising new area of mathematics.
首席研究员和他的同事们开发了计算和理论框架,以分析具有低维内在结构的大数据集。更具体地说,它们解决了以下挑战:在存在显著异常值和噪声的情况下构建潜在的曲线和曲面;改进了最近针对具有显著噪声的大数据集的非线性嵌入技术;分析由具有低维惯性流形的特殊非线性偏微分方程组生成的大数据集。提出的研究有几个重要的应用:图像的定量边缘检测,通过Muon辐射检测核装置,识别蛋白质结合的基因组区域(甚至特定位置),定量探索基因本体论中的功能域及其与结构特性的关系。这项提议的更广泛的影响如下:1)数学表明了一些重要的应用,上面列出了一些应用。2)这些应用指导并要求对具有内在低维几何结构的数据集进行多尺度几何分析的广泛框架。3)不同数学领域之间的相互作用,特别是计算调和分析、科学计算、统计学习、概率和数学建模。4)多学科协作,涉及应用数学家、生物学家、计算机科学家、统计学家和数学分析师。5)产业协作。6)在一个很有前途的数学新领域培训年轻的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilad Lerman其他文献
Estimation of Camera Locations in Highly Corrupted Scenarios: All About that Base, No Shape Trouble
高度损坏场景中摄像机位置的估计:一切都围绕该底座,没有形状问题
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yunpeng Shi;Gilad Lerman - 通讯作者:
Gilad Lerman
Phase transition in random tensors with multiple spikes
具有多个尖峰的随机张量的相变
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wei;Madeline Handschy;Gilad Lerman - 通讯作者:
Gilad Lerman
$${l_p}$$ -Recovery of the Most Significant Subspace Among Multiple Subspaces with Outliers
- DOI:
10.1007/s00365-014-9242-6 - 发表时间:
2014-07-03 - 期刊:
- 影响因子:1.200
- 作者:
Gilad Lerman;Teng Zhang - 通讯作者:
Teng Zhang
Analysis and algorithms for emℓ/emsubemp/em/sub-based semi-supervised learning on graphs
基于 emℓ/emsubemp/em/sub 的图上半监督学习的分析与算法
- DOI:
10.1016/j.acha.2022.01.004 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:3.200
- 作者:
Mauricio Flores;Jeff Calder;Gilad Lerman - 通讯作者:
Gilad Lerman
Topological Data Analysis and Machine Learning Theory
拓扑数据分析和机器学习理论
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
G. Carlsson;Rick Jardine;Dmitry Feichtner;D. Morozov;D. Attali;A. Bak;M. Belkin;Peter Bubenik;Brittany Terese Fasy;Jesse Johnson;Matthew Kahle;Gilad Lerman;Sayan Mukherjee;Monica Nicolau;A. Patel;Yusu Wang - 通讯作者:
Yusu Wang
Gilad Lerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilad Lerman', 18)}}的其他基金
Mathematically-Guaranteed Global Solutions to Structure-from-Motion
数学保证的运动结构全局解决方案
- 批准号:
2152766 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
ATD: Robustness, Privacy, and Fairness in Threat Detection
ATD:威胁检测中的稳健性、隐私性和公平性
- 批准号:
2124913 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
ATD: Threat Detection Problems in Precision Agriculture and Satellite Imaging
ATD:精准农业和卫星成像中的威胁检测问题
- 批准号:
1830418 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Theory-Driven Solutions to Robust and Non-Convex Data Science Problems
稳健和非凸数据科学问题的理论驱动解决方案
- 批准号:
1821266 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Novel Paradigms in Geometric Modeling of Large and High-Dimensional Data Sets
大型高维数据集几何建模的新范式
- 批准号:
1418386 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: New Paradigms in Geometric Analysis of Data Sets and their Applications
职业:数据集几何分析的新范式及其应用
- 批准号:
0956072 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Multi-manifold data modeling: theory, algorithms and applications
协作研究:多流形数据建模:理论、算法和应用
- 批准号:
0915064 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing and exploring methods to understand human-nature interactions in urban areas using new forms of big data
利用新形式的大数据开发和探索理解城市地区人与自然相互作用的方法
- 批准号:
ES/W012979/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Education DCL: EAGER: Exploring New Pathways into Cybersecurity Careers for Rural English Learners through XR-enabled Educational Methods
教育 DCL:EAGER:通过支持 XR 的教育方法探索农村英语学习者网络安全职业的新途径
- 批准号:
2335751 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Exploring methods for the quantification of relational values of nature
探索自然相关价值的量化方法
- 批准号:
23KJ0466 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Exploring electric current post-processing methods for improving the microstructure and reducing defects in additively manufactured materials
探索电流后处理方法以改善增材制造材料的微观结构并减少缺陷
- 批准号:
23K13219 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Intersectionality and the social and structural determinants of health: a mixed methods study exploring the experiences of Black people in Canada with type 2 diabetes
交叉性与健康的社会和结构决定因素:一项混合方法研究,探讨加拿大黑人患有 2 型糖尿病的经历
- 批准号:
475665 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship Programs
Exploring individual differences in language processing using behavioral and electrophysiological methods
使用行为和电生理学方法探索语言处理的个体差异
- 批准号:
RGPIN-2018-05311 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Exploring Response Properties of Molecules and Extended Systems Using Theoretical Methods
使用理论方法探索分子和扩展系统的响应特性
- 批准号:
2152633 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Exploring high-reliability and cost-effective methods for generating feedback comment generataton for writing learning
探索高可靠性和高性价比的写作学习反馈评论生成方法
- 批准号:
22K12326 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring information access methods based on structuring narrative content by focusing on characters.
探索以人物为中心构建叙事内容的信息获取方法。
- 批准号:
22K12338 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring effective teaching methods for young instrumental music students enrolled in one-to-one synchronous online lessons
探索青少年器乐学生一对一同步网课的有效教学方法
- 批准号:
2732711 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship