SPX: Collaborative research: Scalable Heterogeneous Migrating Threads for Post-Moore Computing
SPX:协作研究:后摩尔计算的可扩展异构迁移线程
基本信息
- 批准号:1822939
- 负责人:
- 金额:$ 52.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will advance the state of the art in computer architecture and programming systems for extreme and heterogeneous parallelism. It is clear that the post-Moore' law era will require major disruptions in computing systems. This project will address computer architecture and programming system challenges for this new era, with a focus on approaches that are expected to be scalable in size, cost effectiveness, and usability by retaining some tenets of the von Neumann computing model (unlike more exploratory approaches like biological or quantum computing). By emphasizing data analytics, the work will also benefit a rapidly growing swatch of modern life (commercial, cyber, national security, social networks). A deeper understanding of how such applications can be made more scalable, and responsive enough to handle increasing real-time requirements, should lead to wider impacts across every-day life with significant potential for technology transition. There is also a direct connection to pedagogy and workforce development, since both hardware and software aspects of this proposal can enable a broad range of students to better understand the wider diversity of computing platforms projected in future technology roadmaps. The SHMT (Scalable Heterogeneous Migrating Thread) model developed in this award will include extensions to the migrating threads and asynchronous task models to support heterogeneity, and extensions to the transaction and actor models to support data coherence. Further, the investigators propose to use data analytic graph problems to evaluate their research, since these applications are both important in practice and are challenging to solve on current systems. Given the expected continued increase in the size, complexity, and dynamic nature of such computations, it is of growing value to understand how to implement them in a manner that can scale to very high levels of concurrency in environments that include high rate streams of both updates and queries. These techniques can also apply to other application classes, such as scientific applications where data is sparse or irregular. The overall objective of this 3-year research project is to advance the foundations of computer architecture and programming systems to address the emerging challenges of scalable parallelism and extreme heterogeneity, with an emphasis on data analytics and solving data coherence, system management, resource allocation, and task scheduling issues. The investigators will leverage their distinct but synergistic expertise in the architecture and programming systems areas by building on, and integrating, their past work on migrating threads and near-memory processing, software support for asynchronous task parallelism for heterogeneous computing, and data analytics. The Center for Research into Novel Computing Hierarchies (CRNCH) at Georgia Tech will provide access to first-of-a-kind alternative systems for use in evaluating the new concepts. Industrial collaborators include Lexis-Nexis Risk Solutions and Kyndi, for whom graph data analytics are central to their business model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将推进计算机架构和编程系统的最先进技术,以实现极端和异构并行性。显然,后摩尔定律时代将需要对计算系统进行重大破坏。该项目将解决这个新时代的计算机架构和编程系统挑战,重点关注通过保留冯诺依曼计算模型的一些原则(与生物或量子计算等更具探索性的方法不同)而有望在规模、成本效益和可用性方面可扩展的方法。通过强调数据分析,这项工作还将惠及快速增长的现代生活领域(商业、网络、国家安全、社交网络)。更深入地了解如何使此类应用程序更具可扩展性和足够的响应能力来处理日益增长的实时要求,应该会对日常生活产生更广泛的影响,并具有技术转型的巨大潜力。它还与教学法和劳动力发展有直接联系,因为该提案的硬件和软件方面都可以使广大学生更好地了解未来技术路线图中规划的更广泛的计算平台多样性。该奖项中开发的SHMT(可扩展异构迁移线程)模型将包括对迁移线程和异步任务模型的扩展以支持异构性,以及对事务和参与者模型的扩展以支持数据一致性。此外,研究人员建议使用数据分析图问题来评估他们的研究,因为这些应用在实践中既重要又在当前系统上解决起来具有挑战性。考虑到此类计算的规模、复杂性和动态性质预计将持续增加,了解如何在包含高速更新和查询流的环境中以可扩展到非常高的并发级别的方式实现它们的价值越来越大。这些技术还可以应用于其他应用程序类别,例如数据稀疏或不规则的科学应用程序。这个为期 3 年的研究项目的总体目标是推进计算机体系结构和编程系统的基础,以应对可扩展并行性和极端异构性的新挑战,重点是数据分析和解决数据一致性、系统管理、资源分配和任务调度问题。研究人员将通过构建和集成他们过去在迁移线程和近内存处理、异构计算异步任务并行软件支持以及数据分析方面的工作,利用他们在架构和编程系统领域独特但协同的专业知识。佐治亚理工学院新型计算层次研究中心 (CRNCH) 将提供首个替代系统,用于评估新概念。工业合作者包括 Lexis-Nexis Risk Solutions 和 Kyndi,对他们来说,图数据分析是其业务模式的核心。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-threading Semantics for Highly Heterogeneous Systems Using Mobile Threads
使用移动线程的高度异构系统的多线程语义
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kogge, Peter M.
- 通讯作者:Kogge, Peter M.
Greatly Accelerated Scaling of Streaming Problems with A Migrating Thread Architecture
通过迁移线程架构大大加速流处理问题的扩展
- DOI:10.1109/ia354616.2021.00009
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Page, Brian A.;Kogge, Peter M.
- 通讯作者:Kogge, Peter M.
Scalability of streaming on migrating threads
迁移线程上流的可扩展性
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Page, Brian A.;Kogge, Peter M.
- 通讯作者:Kogge, Peter M.
Locality: The 3rd Wall and The Need for Innovation in Parallel Architectures
局部性:第三堵墙和并行架构创新的需求
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kogge, Peter M;Page, Brian A
- 通讯作者:Page, Brian A
Scalability of Sparse Matrix Dense Vector Multiply (SpMV) on a Migrating Thread Architecture
迁移线程架构上稀疏矩阵密集向量乘法 (SpMV) 的可扩展性
- DOI:10.1109/ipdpsw50202.2020.00088
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Page, Brian A.;Kogge, Peter M.
- 通讯作者:Kogge, Peter M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kogge其他文献
Peter Kogge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kogge', 18)}}的其他基金
IUCRC Phase I University of Notre Dame: Center for Quantum Technologies (CQT)
IUCRC 第一阶段圣母大学:量子技术中心 (CQT)
- 批准号:
2224985 - 财政年份:2022
- 资助金额:
$ 52.45万 - 项目类别:
Continuing Grant
IUCRC Planning Grant University of Notre Dame: Center for Quantum Technologies (CQT)
IUCRC 规划拨款圣母大学:量子技术中心 (CQT)
- 批准号:
2052706 - 财政年份:2021
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
EAGER: Developing scalable benchmark mini-apps for graph engine comparison
EAGER:开发可扩展的基准迷你应用程序以进行图形引擎比较
- 批准号:
1642280 - 财政年份:2016
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
NIRT: Architectures and Devices for Quantum-dot Cellular Automata
NIRT:量子点元胞自动机的架构和设备
- 批准号:
0210153 - 财政年份:2002
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
PDS: Pursuing a Petaflop: Point Designs for 100TF Computers Using PIM Technologies
PDS:追求千万亿次浮点运算:使用 PIM 技术的 100TF 计算机的单点设计
- 批准号:
9612028 - 财政年份:1996
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
Architectural Techniques for Inherently Lower Power Computers
固有低功耗计算机的架构技术
- 批准号:
9503682 - 财政年份:1995
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 52.45万 - 项目类别:
Standard Grant