Collaborative Research: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作研究:EAGER:探索和推进引力波物理学稳健科学的最新技术
基本信息
- 批准号:1823405
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Science is increasingly based on computation for science simulations, data management and analysis, instrument control and collaboration. For scientific results generated through computation to be considered robust and become widely accepted, the computational techniques should be automated, reproducible and trustworthy. By exploring the practices of gravitational-wave astronomy researchers working on the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, this project seeks to create a set of case studies documenting broadly applicable methods for reproducible computational science. Specifically, the project will explore and articulate what reproducibility, automation, and trust mean with respect to computation-based research in gravitational-wave astronomy, identify, implement and validate a set of experimental practices, that will include computational techniques, and finally, evaluate how these experimental practices can be extended to other science domains. Robust computational science builds on rigorous methods and is composed of three key elements: (1) reproducibility, which enables the verification and leveraging of scientists' findings; (2) automation, which speeds up the exploration of alternative solutions and the processing of large amounts of data while reducing the introduction of errors; and (3) trust, providing security and reliability for software and data, while supplying the necessary attributes for confidence in the scientist's own results and results from others. This project explores robust science in the LIGO project through the following activities within the context of gravitational-wave astronomy: (1) articulating the roles of reproducibility, automation, and trust in gravitational-wave astronomy; (2) identifying, implementing and validating a set of experimental practices, including computational techniques; and (3) advancing towards the project's vision of general computational methods for robust science by evaluating how the experimental practices can be extended to other science domains. The project will develop and use a survey to collect information about LIGO workflows that are composed of a series of experimental, computational, and data manipulation steps. The analysis of the survey will result in a document that describes what reproducibility means in the LIGO context and help identify potential improvements in LIGO's practices. The project will generalize these findings by documenting a mapping of LIGOÕs original and enhanced approach to other science workflows including those of the molecular dynamics and bioinformatics communities. The final project document will target a broad audience that includes researchers and students at various levels of education, with the goal of introducing them to the concept of robust computational research, and the underlying concepts of reproducibility, automation and trust, teaching them to access code, data, and workflow information to regenerate findings, learn about the scientific methods, and to engage in STEM research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学越来越多地基于科学模拟、数据管理和分析、仪器控制和协作的计算。为了使通过计算产生的科学结果被认为是可靠的并被广泛接受,计算技术应该是自动化的、可重复的和值得信赖的。通过探索在激光干涉引力波天文台(LIGO)项目中工作的引力波天文学研究人员的实践,该项目旨在创建一组案例研究,记录可再生计算科学的广泛适用方法。具体来说,该项目将探索和阐明在引力波天文学中基于计算的研究中的可重复性,自动化和信任意味着什么,确定,实施和验证一套实验实践,其中将包括计算技术,最后,评估这些实验实践如何扩展到其他科学领域。强大的计算科学建立在严格的方法基础上,由三个关键要素组成:(1)可重复性,这使得科学家的发现能够得到验证和利用;(2)自动化,这加快了对替代解决方案的探索和对大量数据的处理,同时减少了错误的引入;(3)信任,为软件和数据提供安全性和可靠性,同时为科学家对自己的结果和他人的结果的信心提供必要的属性。该项目通过以下活动在引力波天文学的背景下探索LIGO项目中的强大科学:(1)阐明引力波天文学中可重复性,自动化和信任的作用;(2)确定,实施和验证一套实验实践,包括计算技术;以及(3)通过评估如何将实验实践扩展到其他科学领域,推进该项目对稳健科学的通用计算方法的愿景。该项目将开发和使用调查来收集有关LIGO工作流程的信息,这些工作流程由一系列实验,计算和数据操作步骤组成。对调查的分析将产生一份文件,描述LIGO背景下的可重复性意味着什么,并帮助确定LIGO实践中的潜在改进。该项目将通过记录LIGOALOS的原始和增强方法与其他科学工作流程(包括分子动力学和生物信息学社区)的映射来概括这些发现。最终的项目文件将面向广泛的受众,包括不同教育水平的研究人员和学生,目标是向他们介绍强大的计算研究的概念,以及可重复性,自动化和信任的基本概念,教他们访问代码,数据和工作流程信息以重新生成结果,了解科学方法,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data
- DOI:10.3847/1538-4357/ab0108
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:A. Nitz;C. Capano;A. Nielsen;S. Reyes;R. White;Duncan A. Brown;B. Krishnan
- 通讯作者:A. Nitz;C. Capano;A. Nielsen;S. Reyes;R. White;Duncan A. Brown;B. Krishnan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ewa Deelman其他文献
Mapping Abstract Complex Workflows onto Grid Environments
- DOI:
10.1023/a:1024000426962 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:2.900
- 作者:
Ewa Deelman;James Blythe;Yolanda Gil;Carl Kesselman;Gaurang Mehta;Karan Vahi;Kent Blackburn;Albert Lazzarini;Adam Arbree;Richard Cavanaugh;Scott Koranda - 通讯作者:
Scott Koranda
Advancing Anomaly Detection in Computational Workflows with Active Learning
通过主动学习推进计算工作流程中的异常检测
- DOI:
10.48550/arxiv.2405.06133 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Krishnan Raghavan;George Papadimitriou;Hongwei Jin;A. Mandal;Mariam Kiran;Prasanna Balaprakash;Ewa Deelman - 通讯作者:
Ewa Deelman
A terminology for scientific workflow systems
科学工作流系统的术语
- DOI:
10.1016/j.future.2025.107974 - 发表时间:
2026-01-01 - 期刊:
- 影响因子:6.100
- 作者:
Frédéric Suter;Tainã Coleman;İlkay Altintaş;Rosa M. Badia;Bartosz Balis;Kyle Chard;Iacopo Colonnelli;Ewa Deelman;Paolo Di Tommaso;Thomas Fahringer;Carole Goble;Shantenu Jha;Daniel S. Katz;Johannes Köster;Ulf Leser;Kshitij Mehta;Hilary Oliver;J.-Luc Peterson;Giovanni Pizzi;Loïc Pottier;Rafael Ferreira da Silva - 通讯作者:
Rafael Ferreira da Silva
Broadening Student Engagement To Build the Next Generation of Cyberinfrastructure Professionals
扩大学生参与度,培养下一代网络基础设施专业人员
- DOI:
10.1145/3569951.3597567 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Angela Murillo;Don Brower;Sarowar Hossain;K. Kee;A. Mandal;J. Nabrzyski;Erik Scott;Nicole K. Virdone;Rodney Ewing;Ewa Deelman - 通讯作者:
Ewa Deelman
How is Artificial Intelligence Changing Science?
人工智能如何改变科学?
- DOI:
10.1109/e-science58273.2023.10254913 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ewa Deelman - 通讯作者:
Ewa Deelman
Ewa Deelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ewa Deelman', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: CyberInfrastructure Training and Education for Synchrotron X-Ray Science (X-CITE)
合作研究:网络培训:实施:媒介:同步加速器 X 射线科学网络基础设施培训和教育 (X-CITE)
- 批准号:
2320375 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331153 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CI CoE: CI Compass: An NSF Cyberinfrastructure (CI) Center of Excellence for Navigating the Major Facilities Data Lifecycle
CI CoE:CI Compass:用于导航主要设施数据生命周期的 NSF 网络基础设施 (CI) 卓越中心
- 批准号:
2127548 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Simulation-driven runtime resource management for distributed workflow applications
协作研究:OAC Core:分布式工作流应用程序的模拟驱动的运行时资源管理
- 批准号:
2106147 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Simulation-driven Evaluation of Cyberinfrastructure Systems
协作研究:要素:网络基础设施系统的仿真驱动评估
- 批准号:
2103508 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: VisDict - Visual Dictionaries for Enhancing the Communication between Domain Scientists and Scientific Workflow Providers
协作研究:EAGER:VisDict - 用于增强领域科学家和科学工作流程提供商之间沟通的视觉词典
- 批准号:
2100636 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
- 批准号:
2041901 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Leveraging Advanced Cyberinfrastructure and Developing Organizational Resilience for NSF Large Facilities in the Pandemic Era
合作研究:EAGER:在大流行时代利用先进的网络基础设施并提高 NSF 大型设施的组织弹性
- 批准号:
2042054 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
- 批准号:
2028930 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
2019 NSF Workshop on Connecting Large Facilities and Cyberinfrastructure
2019 年 NSF 连接大型设施和网络基础设施研讨会
- 批准号:
1933353 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant














{{item.name}}会员




