EAGER: manipulating spin dynamics in thionated perylene diimide organic semiconductors: towards organic spin caloritronic devices

EAGER:操纵硫代苝二酰亚胺有机半导体中的自旋动力学:走向有机自旋热电子器件

基本信息

  • 批准号:
    1824263
  • 负责人:
  • 金额:
    $ 25.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical SummaryMoore's Law, the dominant strategy for improving the speed and efficiency of electronic devices, relies on scaling down the transistor dimensions, so that more of them fit in a defined area, but technology is approaching a size scale in which pursuing this strategy further can only be done with an enormous increase in fabrication cost. Fundamentally new strategies are needed to accommodate society's increasing technological demands. Spin-based solid-state systems (spintronics), represent such a fundamentally new strategy. Unlike conventional electronics, where the charge of electrons is used to store and process information in transistors, spintronics uses the spin of electrons to carry digital information. With this award, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the principle investigator synthesizes novel n-type organic semiconductors that are good candidates for spin-based computing technologies. Due to their strong spin-dependent properties they are efficient spin-transistor materials. Additionally, the researchers investigate, if waste heat from a device may also be converted into spin currents thus increasing the overall efficiency of spin-transistor devices. An innovative education and outreach program, which includes bi-weekly hands-on research experiences related to energy conversion and storage into the science curriculum of a local urban high-need school in the Salt Lake City area, is part of this research project. Additionally, underprivileged students from local high-schools are given the opportunity to pursue research over the summer in the principle investigator's labs.Technical SummaryRecent advances in the field of organic electronics have demonstrated that the physical and chemical properties of organic semiconductors can be vastly improved by tuning the molecular arrangement of the sp2 hybridized backbone system or by oxidatively doping the organic molecule to form either a p-type or n-type semiconductor. Although p-type organic semiconductors have been largely explored as potential thermoelectric and spintronic materials, n-type organic semiconductors have fallen behind due to their low electron affinities. As part of this award, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the principle investigator synthesizes novel n-type organic semiconductors based on the thionation of perylene diimides. Additionally, fundamental mechanistic understanding of the influence of electronic structure, morphology, intrinsic and extrinsic doping, and spins on the thermoelectric and spintronic properties of these perylene diimide n-type organic semiconductors is being elucidated. The studies investigate new breakthroughs in both materials design and modulation of fundamental physical phenomena by carefully elucidating the role of spin-orbit coupling, electron-phonon coupling, and solid-state crystal chemistry on the performance of thionated perylene diimide thermoelectric and spintronic materials. An innovative education and outreach program, which includes bi-weekly hands-on research experiences related to energy conversion and storage into the science curriculum of a local urban high-need school in the Salt Lake City area, is part of this research project. Additionally, underprivileged students from local high schools are given the opportunity to pursue research over the summer in the principle investigator's labs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性概述摩尔定律是用于提高电子器件的速度和效率的主要策略,它依赖于缩小晶体管尺寸,使得更多的晶体管适合于限定的区域,但是技术正在接近这样的尺寸规模,其中进一步追求这种策略只能在制造成本大幅增加的情况下进行。从根本上说,需要新的战略来适应社会日益增长的技术需求。基于自旋的固态系统(自旋电子学)代表了这样一种全新的策略。与传统电子学不同,电子的电荷被用来在晶体管中存储和处理信息,自旋电子学使用电子的自旋来携带数字信息。该奖项由材料研究部的固态和材料化学项目支持,主要研究人员合成了新型n型有机半导体,这些半导体是基于自旋的计算技术的良好候选者。由于其强的自旋相关特性,它们是有效的自旋晶体管材料。此外,研究人员还调查了来自器件的废热是否也可以转化为自旋电流,从而提高自旋晶体管器件的整体效率。一个创新的教育和推广计划,其中包括双周动手的研究经验,有关能源转换和存储到当地城市高需求的学校在湖城地区的科学课程,是这个研究项目的一部分。此外,本发明还来自当地高中的贫困学生-技术摘要有机电子学领域的最新进展表明,通过调整sp2杂化骨架系统的分子排列,或者通过氧化掺杂有机分子以形成一种或多种结构,可以大大改善有机半导体的物理和化学性质。p型或n型半导体。虽然p型有机半导体已被广泛探索为潜在的热电和自旋电子材料,但n型有机半导体由于其低电子亲和势而落后。作为该奖项的一部分,该奖项由材料研究部的固态和材料化学项目支持,主要研究人员基于苝二酰亚胺的硫代反应合成了新型n型有机半导体。 此外,电子结构,形态,本征和非本征掺杂,和自旋的热电和自旋电子学性质的影响,这些苝二酰亚胺n-型有机半导体的基本机制的理解正在阐明。这些研究通过仔细阐明自旋轨道耦合,电子-声子耦合和固态晶体化学对硫代苝二酰亚胺热电和自旋电子材料性能的作用,在材料设计和基本物理现象调制方面取得了新的突破。一个创新的教育和推广计划,其中包括双周动手的研究经验,有关能源转换和存储到当地城市高需求的学校在湖城地区的科学课程,是这个研究项目的一部分。此外,来自当地高中的贫困学生有机会在夏季在主要研究者的实验室进行研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WWMOD? What would metal oxides do?: Redefining their applicability in today’s energy technologies
  • DOI:
    10.1016/j.poly.2019.06.001
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Laura Flannery;Heilly Gálvez;Wendy J. Nimens;A. A. Rahman-A.;Luisa Whittaker‐Brooks
  • 通讯作者:
    Laura Flannery;Heilly Gálvez;Wendy J. Nimens;A. A. Rahman-A.;Luisa Whittaker‐Brooks
Steric hindrance dependence on the spin and morphology properties of highly oriented self-doped organic small molecule thin films
  • DOI:
    10.1039/d0ma00822b
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Daniel Powell;Eric V Campbell;Laura Flannery;J. Ogle;S. Soss;Luisa Whittaker‐Brooks
  • 通讯作者:
    Daniel Powell;Eric V Campbell;Laura Flannery;J. Ogle;S. Soss;Luisa Whittaker‐Brooks
Promoting Bandlike Transport in Well-Defined and Highly Conducting Polymer Thin Films upon Controlling Dopant Oxidation Levels and Polaron Effects
  • DOI:
    10.1021/acsapm.1c00069
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Ogle;Daniel Powell;Detlef-Matthias Smilgies;D. Nordlund;Luisa Whittaker‐Brooks
  • 通讯作者:
    J. Ogle;Daniel Powell;Detlef-Matthias Smilgies;D. Nordlund;Luisa Whittaker‐Brooks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luisa Whittaker-Brooks其他文献

Lithium deposition mechanism on Si and Cu substrates in the carbonate electrolyte
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Junhui Sun;Jiaying Peng;Terry Ring;Luisa Whittaker-Brooks;Juner Zhu;Dimitrios Fraggedakis;Jin Niu;Tao Gao;Feng Wang
  • 通讯作者:
    Feng Wang

Luisa Whittaker-Brooks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luisa Whittaker-Brooks', 18)}}的其他基金

Equipment: MRI Track 1: Acquisition of an integrated physical property measurement system for the electrical, optical, and magnetic characterization of materials
设备:MRI 轨道 1:获取用于材料电学、光学和磁性表征的集成物理特性测量系统
  • 批准号:
    2319964
  • 财政年份:
    2023
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
Developing self-assembly strategies for the fabrication of well-defined and large area 2D coordination polymers
开发用于制造明确的大面积二维配位聚合物的自组装策略
  • 批准号:
    2326228
  • 财政年份:
    2023
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Continuing Grant
CAS: Magnetic moment-induced adaptability of vertically-oriented 1D electrochemical systems
CAS:垂直定向一维电化学系统的磁矩诱导适应性
  • 批准号:
    2203926
  • 财政年份:
    2022
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a laboratory beamline small (wide)-angle X-ray scattering tool for in-situ characterization of (bio)materials
MRI:获取实验室光束线小(广角)角度 X 射线散射工具,用于(生物)材料的原位表征
  • 批准号:
    2018413
  • 财政年份:
    2020
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
Developing in operando structure-property-function guidelines for small molecule organic electron acceptors and its implication on device performance and charge carrier mobility
小分子有机电子受体的操作结构-性能-功能指南的开发及其对器件性能和载流子迁移率的影响
  • 批准号:
    2016191
  • 财政年份:
    2020
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Continuing Grant
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Research Grant
Understanding and manipulating how Trypanosoma cruzi infects its triatomine insect hosts
了解和操纵克氏锥虫如何感染其锥蝽昆虫宿主
  • 批准号:
    BB/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Research Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
Characterising and Manipulating Triplet Interactions
表征和操纵三重态相互作用
  • 批准号:
    FT230100002
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    ARC Future Fellowships
Manipulating sex determination pathways for pest control
操纵性别决定途径以控制害虫
  • 批准号:
    2869559
  • 财政年份:
    2023
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Studentship
TriMED: Measuring, Modeling and Manipulating Excitability and Disease
TriMED:测量、建模和操纵兴奋性和疾病
  • 批准号:
    10627404
  • 财政年份:
    2023
  • 资助金额:
    $ 25.04万
  • 项目类别:
Manipulating normal estrogen physiology as a therapeutic approach in cancer
操纵正常雌激素生理学作为癌症的治疗方法
  • 批准号:
    10561945
  • 财政年份:
    2023
  • 资助金额:
    $ 25.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了