Investigating the Effectiveness of Machine Learning Paradigms for Supporting Engineering Designers in Rapidly Evolving Digital Manufacturing

研究机器学习范式在快速发展的数字化制造中支持工程设计师的有效性

基本信息

项目摘要

Manufacturing technology is advancing at an unprecedented rate as it become increasingly digital. Taking advantage of new manufacturing technology is critical for maintaining national security and prosperity, but even dedicated experts and leading-edge companies struggle to keep pace with manufacturing's rapid advancement. This makes it difficult for engineers to learn about the latest manufacturing technology and design products that take full advantage of new fabrication processes as they become available. Fortunately, many new manufacturing technologies rely on digital models that produce abundant design data to which machine learning can be applied to derive design knowledge. While design and manufacturing datasets may be useful for that reason, they are also highly variable in both number and quality of solutions. This work investigates how the size and quality of these datasets relate to the accuracy and usefulness of machine learning insights, and how this impacts the support provided to engineering designers. In this work, we focus on additive manufacturing (also called "3D printing") as a representative digital manufacturing technology that is rapidly evolving and growing, and which is projected to contribute substantially to the nation?s future manufacturing portfolio. Studies conducted with engineering students as part of this work will be used to provide skill training as well as collect data, helping prepare them for the manufacturing workforce.The research will combine machine learning, additive manufacturing, and explainable artificial intelligence to evaluate the use of automated design feedback derived from existing crowdsourced additive manufacturing design challenges. First, part designs will be mined from open, online repositories as well as through curated repositories established in this work via in-class design challenges. Next, a machine learning pipeline will be implemented to extract design patterns from curated digital repositories. This will make it possible to test the effect of repository size on the accuracy of design feedback and of repository size on the granularity of feedback. Finally, a user validation study will be conducted in which students will undertake a design task specific to additive manufacturing technology. Feedback with varying characteristics will be provided to some participants by extending the machine learning pipeline developed previously with explainable capabilities. Specific technical deliverables will include (1) a novel dataset of voxelized part designs, (2) a deeper understanding of the impact of repository size and quality on usefulness of machine-generated feedback, and (3) empirical evidence of the impact of real-time additive manufacturing feedback on the solutions generated by engineering designers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
制造技术正以前所未有的速度发展,因为它变得越来越数字化。 利用新的制造技术对于维护国家安全和繁荣至关重要,但即使是专门的专家和领先的公司也很难跟上制造业的快速发展。 这使得工程师很难了解最新的制造技术,并设计出充分利用新制造工艺的产品。 幸运的是,许多新的制造技术依赖于数字模型,这些数字模型可以产生丰富的设计数据,机器学习可以应用于这些数据来获得设计知识。 虽然设计和制造数据集可能是有用的,但它们在解决方案的数量和质量方面也存在很大差异。 这项工作调查了这些数据集的大小和质量如何与机器学习见解的准确性和有用性相关,以及这如何影响为工程设计师提供的支持。 在这项工作中,我们专注于增材制造(也称为“3D打印”)作为一种代表性的数字制造技术,正在迅速发展和增长,预计将为国家做出重大贡献。未来的制造业组合。作为这项工作的一部分,对工程专业学生进行的研究将用于提供技能培训和收集数据,帮助他们为制造业劳动力做好准备。该研究将结合联合收割机机器学习、增材制造和可解释的人工智能,评估来自现有众包增材制造设计挑战的自动设计反馈的使用情况。 首先,零件设计将从开放的在线存储库中挖掘,以及通过在课堂设计挑战中建立的策展存储库。 接下来,将实施机器学习管道,从策划的数字存储库中提取设计模式。 这将使得测试存储库大小对设计反馈的准确性以及存储库大小对反馈粒度的影响成为可能。 最后,将进行用户验证研究,学生将承担特定于增材制造技术的设计任务。 通过扩展先前开发的具有可解释功能的机器学习管道,将向一些参与者提供具有不同特征的反馈。 具体的技术交付成果将包括(1)一个新的体素化零件设计数据集,(2)更深入地了解存储库大小和质量对机器生成反馈有用性的影响,和(3)经验证据的影响,真实的-该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Standardized Framework for Communicating and Modelling Parametrically Defined Mesostructure Patterns
用于参数化定义细观结构模式的通信和建模的标准化框架
Stochastically-Trained Physics-Informed Neural Networks: Application to Thermal Analysis in metal Laser Powder Bed Fusion
随机训练的物理信息神经网络:在金属激光粉末床熔融热分析中的应用
Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive Manufacturing
  • DOI:
    10.1115/1.4044199
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Glen Williams;N. Meisel;T. Simpson;Christopher McComb
  • 通讯作者:
    Glen Williams;N. Meisel;T. Simpson;Christopher McComb
Deriving Metamodels to Relate Machine Learning Quality to Repository Characteristics in the Context of Additive Manufacturing
派生元模型以将机器学习质量与增材制造背景下的存储库特征联系起来
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher McComb其他文献

Assessing Engineering Design: A Comparison of the Effect of Exams and Design Practica on First-Year Students’ Design Self-Efficacy
评估工程设计:考试和设计实践对一年级学生设计自我效能感的影响比较
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Nolte;Catherine G. P. Berdanier;Jessica Menold;Christopher McComb
  • 通讯作者:
    Christopher McComb
Designing the Characteristics of Design Teams via Cognitively Inspired Computational Modeling
  • DOI:
    10.31237/osf.io/4bs2d
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher McComb
  • 通讯作者:
    Christopher McComb
When faced with increasing complexity: The effectiveness of AI assistance for drone design
面对日益增加的复杂性:人工智能辅助无人机设计的有效性
  • DOI:
    10.1115/1.4051871
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Binyang Song;N. F. S. Zurita;H. Nolte;H. Singh;J. Cagan;Christopher McComb
  • 通讯作者:
    Christopher McComb
Part filtering methods for additive manufacturing: A detailed review and a novel process-agnostic method
  • DOI:
    10.1016/j.addma.2021.102115
  • 发表时间:
    2021-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Bracken Brennan;Timothy W. Simpson;Christopher McComb;Kathryn W. Jablokow;Joseph Hamann
  • 通讯作者:
    Joseph Hamann
Impossible by design? Fairness, strategy, and Arrow’s impossibility theorem
公平、策略和阿罗不可能定理是不可能的吗?
  • DOI:
    10.1017/dsj.2017.1
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Christopher McComb;K. Goucher;J. Cagan
  • 通讯作者:
    J. Cagan

Christopher McComb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher McComb', 18)}}的其他基金

Investigating the Effectiveness of Machine Learning Paradigms for Supporting Engineering Designers in Rapidly Evolving Digital Manufacturing
研究机器学习范式在快速发展的数字化制造中支持工程设计师的有效性
  • 批准号:
    2309250
  • 财政年份:
    2022
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Standard Grant

相似海外基金

An Explanatory Machine Learning Framework for Teacher Effectiveness in STEM Education
STEM 教育中教师效能的解释性机器学习框架
  • 批准号:
    2321191
  • 财政年份:
    2024
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Standard Grant
Investigating the Effectiveness of Machine Learning Paradigms for Supporting Engineering Designers in Rapidly Evolving Digital Manufacturing
研究机器学习范式在快速发展的数字化制造中支持工程设计师的有效性
  • 批准号:
    2309250
  • 财政年份:
    2022
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Standard Grant
Prediction Model for Tumor Immune Activation and Radiotherapy Effectiveness Using Machine Learning
使用机器学习预测肿瘤免疫激活和放射治疗效果的模型
  • 批准号:
    22K07671
  • 财政年份:
    2022
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine Learning Methods to Predict Cancer Progression and Estimate Treatment Effectiveness
预测癌症进展和估计治疗效果的机器学习方法
  • 批准号:
    10559507
  • 财政年份:
    2022
  • 资助金额:
    $ 42.47万
  • 项目类别:
Machine Learning Methods to Predict Cancer Progression and Estimate Treatment Effectiveness
预测癌症进展和估计治疗效果的机器学习方法
  • 批准号:
    10384213
  • 财政年份:
    2022
  • 资助金额:
    $ 42.47万
  • 项目类别:
Long-term effectiveness of BPH/LUTS pharmacological therapies and using machine learning based predictive analytics to tailor treatment
BPH/LUTS 药物治疗的长期有效性,并使用基于机器学习的预测分析来定制治疗
  • 批准号:
    10618734
  • 财政年份:
    2021
  • 资助金额:
    $ 42.47万
  • 项目类别:
Machine Learning Techniques for Evaluating Disease and Drugs Effectiveness in Fibre-Bundle Endomicroscopy Systems
用于评估纤维束内镜系统中疾病和药物有效性的机器学习技术
  • 批准号:
    2589298
  • 财政年份:
    2021
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Studentship
IDCOM: Machine Learning Techniques for Evaluating Disease and Drug Effectiveness in Fibre-Bundle Endomicroscopy Systems.
IDCOM:用于评估纤维束内镜系统中疾病和药物有效性的机器学习技术。
  • 批准号:
    2587242
  • 财政年份:
    2021
  • 资助金额:
    $ 42.47万
  • 项目类别:
    Studentship
Long-term effectiveness of BPH/LUTS pharmacological therapies and using machine learning based predictive analytics to tailor treatment.
BPH/LUTS 药物治疗的长期有效性,并使用基于机器学习的预测分析来定制治疗。
  • 批准号:
    10283752
  • 财政年份:
    2021
  • 资助金额:
    $ 42.47万
  • 项目类别:
Long-term effectiveness of BPH/LUTS pharmacological therapies and using machine learning based predictive analytics to tailor treatment
BPH/LUTS 药物治疗的长期有效性,并使用基于机器学习的预测分析来定制治疗
  • 批准号:
    10654038
  • 财政年份:
    2021
  • 资助金额:
    $ 42.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了