Structure-preserving Numerical Methods for Engineering Applications
工程应用的保结构数值方法
基本信息
- 批准号:1826152
- 负责人:
- 金额:$ 22.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves fundamental research that will lay the groundwork for computational analysis tools that can improve our understanding and prediction of the behavior of complex dynamic systems, as wide-ranging as astrodynamics, particle physics, geophysical fluid dynamics, plasma physics and molecular dynamics. The research involves geometric numerical integration (GNI), which involves numerical methods that respect the fundamental physics of a problem by preserving the geometric properties of the governing mathematical equations. Beyond the direct impact of the research outcomes, the project also has significant broader impact through various educational and outreach activities for students at all levels including a camp for middle school students to teach them about mechanical systems and the importance of accurate numerical simulation.Past efforts in the field of geometric numerical integration have mainly focused on developing numerical algorithms for low-dimensional, time-invariant mechanical systems subject to conservative forcing. The esearch effort will develop a theoretical framework to understand and extend the capabilities of existing geometric numerical methods with regard to explicit time-dependence, non-conservative forcing and constraints and investigate their numerical performance for dynamical systems of practical interest with many degrees of freedom. Specifically, the research program will (i) develop structure-preserving methods for time-dependent mechanical systems with external forcing and extend these methods to systems that are constrained or that evolve on non-Euclidean manifolds, (ii) provide a thorough, quantitative comparison of structure-preserving integration schemes with traditional methods for a selection of specific engineering problems including discretization of infinite-dimensional problems, and (iii) create and disseminate a well-documented toolbox that features a variety of structure-preserving numerical methods developed using software familiar to the research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及的基础研究将为计算分析工具奠定基础,这些工具可以提高我们对复杂动态系统行为的理解和预测,范围广泛,包括天体动力学、粒子物理、地球物理流体动力学、等离子体物理和分子动力学。这项研究涉及几何数值积分(GNI),它涉及到通过保留控制数学方程的几何性质来尊重问题的基本物理的数值方法。除了研究成果的直接影响外,该项目还通过面向各级学生的各种教育和推广活动产生了重大的广泛影响,包括为中学生开设夏令营,向他们传授机械系统和精确数值模拟的重要性。过去在几何数值积分领域的努力主要集中在为受保守强迫的低维、时不变的机械系统开发数值算法。这项研究工作将建立一个理论框架,以理解和扩展现有几何数值方法在显式时间相关、非保守强迫和约束方面的能力,并研究它们对具有实际意义的多自由度动力系统的数值性能。具体地说,研究计划将(I)发展具有外力的依赖时间的力学系统的结构保持方法,并将这些方法扩展到受约束或在非欧几里德流形上发展的系统,(Ii)提供结构保持积分方案与传统方法的全面、定量的比较,以选择特定的工程问题,包括无限维问题的离散化,以及(Iii)创建和传播一个文件齐全的工具箱,其中包含使用研究界熟悉的软件开发的各种结构保持数值方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pisciform Locomotion of an Improved Modular Biolocomotion Emulator
改进的模块化生物运动模拟器的鱼形运动
- DOI:10.1016/j.ifacol.2021.10.127
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nguyen, Khanh Q.;Woolsey, Craig A.;Datla, Raju V.;Chung, Uihoon;Hajj, Muhammad R.
- 通讯作者:Hajj, Muhammad R.
Vibrational Control of a 2-Link Mechanism
二连杆机构的振动控制
- DOI:10.1115/dscc2020-3257
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ahmed, Zakia;Tahmasian, Sevak;Woolsey, Craig A.
- 通讯作者:Woolsey, Craig A.
A review of structure-preserving numerical methods for engineering applications
- DOI:10.1016/j.cma.2020.113067
- 发表时间:2020-07
- 期刊:
- 影响因子:7.2
- 作者:Harsh Sharma;M. Patil;C. Woolsey
- 通讯作者:Harsh Sharma;M. Patil;C. Woolsey
Energy-preserving variational integrators for forced Lagrangian systems
强制拉格朗日系统的节能变分积分器
- DOI:10.1016/j.cnsns.2018.04.015
- 发表时间:2018
- 期刊:
- 影响因子:3.9
- 作者:Sharma, Harsh;Patil, Mayuresh;Woolsey, Craig
- 通讯作者:Woolsey, Craig
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Woolsey其他文献
Depth dependent added mass computations using impulse motion simulations for shallowly submerged vehicles, Part 1: Accelerating from rest
使用脉冲运动模拟对浅潜式车辆进行依赖深度的附加质量计算,第 1 部分:从静止加速
- DOI:
10.1016/j.apor.2025.104656 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:4.400
- 作者:
William Lambert;Stefano Brizzolara;Craig Woolsey - 通讯作者:
Craig Woolsey
Depth dependent added mass computations using impulse motion simulations for shallowly submerged vehicles, Part 2: Accelerating from steady forward velocity
使用脉冲运动模拟对浅潜车辆进行深度相关附加质量计算,第 2 部分:从稳定前进速度加速
- DOI:
10.1016/j.apor.2025.104657 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:4.400
- 作者:
William Lambert;Stefano Brizzolara;Craig Woolsey - 通讯作者:
Craig Woolsey
A free surface corrected lumped parameter model for near-surface horizontal maneuvers of underwater vehicles in waves
- DOI:
10.1016/j.oceaneng.2023.114364 - 发表时间:
2023-06-15 - 期刊:
- 影响因子:
- 作者:
William Lambert;Lakshmi Miller;Stefano Brizzolara;Craig Woolsey - 通讯作者:
Craig Woolsey
Craig Woolsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Woolsey', 18)}}的其他基金
FW-HTF: First Person View and Augmented Reality for Airborne Embodied Intelligent Cognitive Assistants
FW-HTF:机载智能认知助理的第一人称视角和增强现实
- 批准号:
1840044 - 财政年份:2018
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
I/UCRC: Center for Unmanned Aircraft Systems Phase II Site: Virginia Tech
I/UCRC:无人机系统中心第二期 地点:弗吉尼亚理工大学
- 批准号:
1650465 - 财政年份:2017
- 资助金额:
$ 22.01万 - 项目类别:
Continuing Grant
Collaborative Research: Unsteady Hydrodynamics and Geometric Control of Pisciform Locomotion
合作研究:鱼形运动的非定常流体动力学和几何控制
- 批准号:
1635143 - 财政年份:2016
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
I/UCRC Phase I: VT Site Addition to the Center for UAS
I/UCRC 第一阶段:UAS 中心增设 VT 站点
- 批准号:
1539975 - 财政年份:2015
- 资助金额:
$ 22.01万 - 项目类别:
Continuing Grant
Planning Grant: I/UCRC Center for UAS Site Addition (Virginia Tech)
规划拨款:I/UCRC 无人机站点增建中心(弗吉尼亚理工大学)
- 批准号:
1464618 - 财政年份:2015
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
Analysis and Optimal Design of Aquatic and Atmospheric Vehicles That Use Biologically Inspired Propulsion and Control Methods
使用仿生推进和控制方法的水上和大气飞行器的分析和优化设计
- 批准号:
1435484 - 财政年份:2014
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
Collaborative Research: A Two-Stage Towing System for Swath-Mapping Ocean Turbulence
合作研究:用于海洋湍流测绘的两级拖曳系统
- 批准号:
0220745 - 财政年份:2002
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
CAREER: Internal Shape Control for Ocean and Atmospheric Vehicles
职业:海洋和大气飞行器的内部形状控制
- 批准号:
0133210 - 财政年份:2002
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
相似国自然基金
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
- 批准号:
23K17655 - 财政年份:2023
- 资助金额:
$ 22.01万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309548 - 财政年份:2023
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
- 批准号:
2405605 - 财政年份:2023
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
- 批准号:
2111479 - 财政年份:2021
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
- 批准号:
21H03452 - 财政年份:2021
- 资助金额:
$ 22.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:
2012269 - 财政年份:2020
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
Discrete integration by parts on any convex polygon and design of structure-preserving numerical schemes
任意凸多边形上的分部离散积分及保结构数值格式的设计
- 批准号:
20K20883 - 财政年份:2020
- 资助金额:
$ 22.01万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:
2012634 - 财政年份:2020
- 资助金额:
$ 22.01万 - 项目类别:
Standard Grant
Structure-Preserving Numerical Methods for Strongly Nonlinear Elliptic Partial Differential Equations
强非线性椭圆偏微分方程的保结构数值方法
- 批准号:
1818861 - 财政年份:2018
- 资助金额:
$ 22.01万 - 项目类别:
Continuing Grant