Novel, engineered bio-inks for 3D printing of complex, perfusable structures
用于 3D 打印复杂可灌注结构的新型工程生物墨水
基本信息
- 批准号:2103812
- 负责人:
- 金额:$ 50.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical AbstractBioprinting, printing with living cells, of three-dimensional tissue has immense future potential, but progress of this emerging technology is limited by a lack of biomaterials that have the necessary mechanical properties to be printable while also having the appropriate biochemical properties to interface with living cells. In particular, biomaterials that enable perfusion, the transport of oxygen, nutrients, and other life-sustaining components, is critically lacking. The need for perfusable structures is perhaps best demonstrated through blood vessel networks, which are required to deliver oxygen and nutrients to living tissue. Perfusable structures are critically important for many other tissues throughout the body including the lymphatic system, airways, and the gastrointestinal tract. To achieve the next generation of printed tissue, this project will develop a family of biomaterials that enable a new biofabrication strategy termed Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP). The GUIDE-3DP materials will allow rapid fabrication of perfusable networks of interconnected channels with precise control over their shapes and sizes. In Aim 1, fluid-perfusable structures with complex branch points, such as mimics of branched blood vessels will be printed. In Aim 2, materials for gas-perfusable structures will be developed. As a case study, a human intestinal tissue will be printed and evaluated for the transport of oxygen through the printed living material. In Aim 3, materials that enable fabrication of continuous vessels with precise variation of the internal diameters will be developed. As case studies, printed models of (1) vascular stenosis (in which a region of the blood vessel is constricted) and (2) the large intestine (which has a repetitive, pouch-like structure) will be printed. These biomaterials will enable the future fabrication of living tissue mimics for a variety of applications that advance, biomaterials, biotechnology, national health and will further position the US to have global leadership in the emerging field of biomanufacturing. Technical AbstractPerfusion, and specifically perfusion-enabling biomaterials, remains one of the most critical challenges in the formation of three-dimensional (3D) multicellular structures, whether for the purposes of tissue engineering, in vitro models of organ development and disease, or fundamental studies of cell behavior. The challenge of fabricating channels with specified geometry are important for multiple tissues throughout the body, including blood vessels, lymphatics, airways, and the gastrointestinal tract. To address this challenge, this project will develop a family of biomaterials that enable a new biofabrication strategy termed Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP). Embedded 3D printing involves the fabrication of desired structures within a support material, reducing deformation and buckling due to gravity and enabling the printing of complex structures. The GUIDE-3DP method builds upon this approach by developing an interfacial diffusant strategy to rapidly fabricate perfusable networks of interconnected channels with precise control over the branching geometry and vessel diameters. In Aim 1, fluid-perfusable structures with complex branch points are fabricated. As a biological case study, endothelial cell morphology and phenotype in the bioprinted branch structures will be characterized, with a focus on how matrix mechanics alters cellular response to fluid shear stress. In Aim 2, gas-perfusable structures for controlled oxygen concentration will be fabricated. As a case study, a 3D human intestinal organoid culture model will be printed and evaluated for the role of oxygenation in regulating intestinal stem cell fate. In Aim 3, continuous vessels with precise variation of luminal diameters will be fabricated, as this geometry commonly occurs in many structures in vivo. As case studies, in vitro models of (1) vascular stenosis (in which a region of the blood vessel is constricted), and (2) the large intestine (which has a repetitive, pouch-like structure) will be printed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物打印,用活细胞打印三维组织具有巨大的未来潜力,但是这种新兴技术的进展受到缺乏生物材料的限制,所述生物材料具有可打印的必要机械性能,同时还具有与活细胞接触的适当生物化学性能。特别是,能够灌注、运输氧气、营养物质和其他维持生命成分的生物材料严重缺乏。对可灌注结构的需求可能通过血管网络得到最好的证明,血管网络是向活组织输送氧气和营养物质所必需的。可灌注结构对于全身的许多其他组织(包括淋巴系统、气道和胃肠道)至关重要。为了实现下一代打印组织,该项目将开发一系列生物材料,以实现一种新的生物制造策略,称为嵌入式3D打印中均匀界面扩散剂的GSTAR(GUIDE-3DP)。GUIDE-3DP材料将允许快速制造互连通道的可灌注网络,并精确控制其形状和大小。在目标1中,将打印具有复杂分支点的流体灌注结构,例如分支血管的模拟物。在目标2中,将开发用于气体灌注结构的材料。作为一个案例研究,将打印人类肠道组织,并评估氧气通过打印的活材料的运输。在目标3中,将开发能够制造内径精确变化的连续容器的材料。作为案例研究,将打印(1)血管狭窄(其中血管的一个区域收缩)和(2)大肠(具有重复的袋状结构)的打印模型。这些生物材料将使未来制造的活组织模拟物的各种应用,推进,生物材料,生物技术,国家健康,并将进一步定位美国在新兴的生物制造领域的全球领导地位。技术摘要灌注,特别是灌注使生物材料,仍然是三维(3D)多细胞结构的形成中最关键的挑战之一,无论是用于组织工程,器官发育和疾病的体外模型,还是细胞行为的基础研究。制造具有特定几何形状的通道的挑战对于整个身体的多个组织(包括血管、呼吸道、气道和胃肠道)是重要的。为了应对这一挑战,该项目将开发一系列生物材料,以实现一种新的生物制造策略,称为嵌入式3D打印中的均匀界面扩散剂的GADAS(GUIDE-3DP)。嵌入式3D打印涉及在支撑材料内制造所需结构,减少由于重力引起的变形和屈曲,并能够打印复杂结构。GUIDE-3DP方法建立在这种方法的基础上,通过开发界面扩散剂策略来快速制造可灌注的互连通道网络,并精确控制分支几何形状和血管直径。在目标1中,制造具有复杂分支点的流体灌注结构。作为生物学案例研究,将对生物打印分支结构中的内皮细胞形态和表型进行表征,重点关注基质力学如何改变细胞对流体剪切应力的反应。在目标2中,将制造用于受控氧浓度的气体灌注结构。作为一个案例研究,将打印一个3D人类肠道类器官培养模型,并评估氧合在调节肠道干细胞命运中的作用。在目标3中,将制造具有精确变化的管腔直径的连续血管,因为这种几何形状通常出现在体内的许多结构中。作为案例研究,将打印(1)血管狭窄(其中血管的一个区域收缩)和(2)大肠(具有重复的袋状结构)的体外模型。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology.
- DOI:10.1002/adhm.202200011
- 发表时间:2022-07
- 期刊:
- 影响因子:10
- 作者:Navarro, Renato S.;Huang, Michelle S.;Roth, Julien G.;Hubka, Kelsea M.;Long, Chris M.;Enejder, Annika;Heilshorn, Sarah C.
- 通讯作者:Heilshorn, Sarah C.
3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels.
使用含有牺牲性细胞封装微凝胶的模块化生物墨水 3D 打印微孔支架。
- DOI:10.1039/d3bm00721a
- 发表时间:2023
- 期刊:
- 影响因子:6.6
- 作者:Seymour,AlexisJ;Kilian,David;Navarro,RenatoS;Hull,SarahM;Heilshorn,SarahC
- 通讯作者:Heilshorn,SarahC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Heilshorn其他文献
Engineering the Microenvironment for Heart Muscle Cell Mechanobiology
- DOI:
10.1016/j.bpj.2019.11.959 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Erica A. Castillo;Kerry Lane;Orlando Chirikian;Samuel Feinstein;Cheavar Blair;Alison Schroer;Gaspard Pardon;Tanya Grancharova;Ru Gunawardane;Sarah Heilshorn;Beth L. Pruitt - 通讯作者:
Beth L. Pruitt
The Optimal Fat Graft: Evaluating the Biomechanical Effects of Diameter, Length, and Flow Rate during Fat Placement
- DOI:
10.1016/j.jamcollsurg.2014.07.215 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:
- 作者:
David Atashroo;Taylor Wearda;Jordan Raphel;Kevin Paik;Elizabeth R. Zielins;Graham G. Walmsley;Ruth Tevlin;Derrick C. Wan;Sarah Heilshorn;Michael T. Longaker - 通讯作者:
Michael T. Longaker
Novel Receptor-Mediated Endothelial Cell Chemotaxis
- DOI:
10.1016/j.bpj.2009.12.2705 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Amir Shamloo;Frank Kuhnert;Vir Choksi;Calvin Kuo;Sarah Heilshorn - 通讯作者:
Sarah Heilshorn
Bio-orthogonal crosslinking and hyaluronan facilitate transparent healing after treatment of deep corneal injuries with in situ-forming hydrogels
生物正交交联和透明质酸有助于原位形成水凝胶治疗深层角膜损伤后的透明愈合
- DOI:
10.1038/s41536-024-00385-9 - 发表时间:
2025-02-04 - 期刊:
- 影响因子:6.500
- 作者:
Fang Chen;Uiyoung Han;Thitima Wungcharoen;Youngyoon Amy Seo;Peter Le;Li Jiang;Nae-Won Kang;Euisun Song;Kyeongwoo Jang;David Mundy;Gabriella Maria Fernandes-Cunha;Sarah Heilshorn;David Myung - 通讯作者:
David Myung
Sarah Heilshorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Heilshorn', 18)}}的其他基金
RECODE: Real-time analysis and environmental feedback for directed differentiation of liver organoids
RECODE:实时分析和环境反馈,用于肝脏类器官的定向分化
- 批准号:
2033302 - 财政年份:2021
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
2018 GRC Signal Transduction by Engineered Extracellular Matrices
2018 工程细胞外基质的 GRC 信号转导
- 批准号:
1824699 - 财政年份:2018
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
New Inks for 3D Bio-Printing based on Bio-orthogonal Click Chemistry
基于生物正交点击化学的 3D 生物打印新型墨水
- 批准号:
1808415 - 财政年份:2018
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
Design of self-assembling bio-inks for cell-based 3D printing
用于细胞3D打印的自组装生物墨水的设计
- 批准号:
1508006 - 财政年份:2015
- 资助金额:
$ 50.13万 - 项目类别:
Continuing Grant
CAREER: Adaptive Biomaterials that Enable Cell-Induced Remodeling and Drug Release
职业:实现细胞诱导重塑和药物释放的适应性生物材料
- 批准号:
0846363 - 财政年份:2009
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
相似国自然基金
基于AMPK/PGC-1α信号轴的工程化外泌体靶向调控BMSCs能量代谢重编程在老年机体骨修复中的作用及其机制研究
- 批准号:82370920
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
重复荷载作用下ECC材料的疲劳性能及力学模型研究
- 批准号:51408487
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The establishment of biliary drainage system in bio-engineered liver
生物工程肝胆汁引流系统的建立
- 批准号:
22K08689 - 财政年份:2022
- 资助金额:
$ 50.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engineered interlayers of bio-retardant and nano-reinforcement on polymers
聚合物生物阻燃和纳米增强工程夹层
- 批准号:
DP220101427 - 财政年份:2022
- 资助金额:
$ 50.13万 - 项目类别:
Discovery Projects
A bio-engineered hepatic niche for ex vivo expansion of HSCs
用于 HSC 离体扩增的生物工程肝脏生态位
- 批准号:
10452482 - 财政年份:2021
- 资助金额:
$ 50.13万 - 项目类别:
A bio-engineered hepatic niche for ex vivo expansion of HSCs
用于 HSC 离体扩增的生物工程肝脏生态位
- 批准号:
10631071 - 财政年份:2021
- 资助金额:
$ 50.13万 - 项目类别:
Engineered bio- and heterogeneous catalysts for improved polymer circularity
工程生物催化剂和非均相催化剂可改善聚合物的循环度
- 批准号:
2887508 - 财政年份:2020
- 资助金额:
$ 50.13万 - 项目类别:
Studentship
CAREER: Bio-Inspired Genetically Engineered Self-Healing for Cementitious Materials
职业:水泥材料的生物启发基因工程自我修复
- 批准号:
1846984 - 财政年份:2019
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant
Center for the Advancement of Wearable Technologies (CAWT): Engineered (Bio)Interfaces, Energy Harvesting/Storage and Data Analytics for Health and Diagnostic Monitoring
可穿戴技术促进中心 (CAWT):用于健康和诊断监测的工程(生物)接口、能量收集/存储和数据分析
- 批准号:
1849243 - 财政年份:2019
- 资助金额:
$ 50.13万 - 项目类别:
Cooperative Agreement
Improvement of survival rate and ECM analysis using bio-engineered liver derived 3D scaffold
使用生物工程肝脏衍生的 3D 支架提高存活率和 ECM 分析
- 批准号:
18K08701 - 财政年份:2018
- 资助金额:
$ 50.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I-Corps: Engineered bio-inspired surface for passive flow control
I-Corps:用于被动流量控制的仿生工程表面
- 批准号:
1829311 - 财政年份:2018
- 资助金额:
$ 50.13万 - 项目类别:
Standard Grant