CyberTraining:CIC: DeapSECURE: A Data-Enabled Advanced Training Program for Cyber Security Research and Education
CyberTraining:CIC:DeapSECURE:用于网络安全研究和教育的数据支持高级培训计划
基本信息
- 批准号:1829771
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the volume and sophistication of cyber-attacks grow, cybersecurity researchers, engineers and practitioners heavily rely on advanced cyberinfrastructure (CI) techniques such as big data, machine learning, and parallel programming, as well as advanced CI platforms, e.g., cloud and high-performance computing to assess cyber risks, identify and mitigate threats, and achieve defense in depth. However, advanced CI techniques have not been widely introduced in undergraduate and graduate cybersecurity curricula. This lack creates a hurdle for many senior undergraduates and early-stage graduate cybersecurity students who are keen to conduct cutting-edge cybersecurity research and/or participate in advanced industrial cybersecurity projects. This project introduces a unique Data-Enabled Advanced Training Program for Cyber Security Research and Education (DeapSECURE), aimed to prepare undergraduate and graduate students with advanced CI techniques and teach them to use CI resources, tools, and services to succeed in cutting-edge cybersecurity research and industrial cybersecurity projects. The project responds to the urgent need for well-prepared cybersecurity workforce in the Hampton Roads metropolitan region, the Commonwealth of Virginia, and the Nation. It, thus, serves the national interest, as stated by NSF's mission: to promote the progress of science; to advance the national health, prosperity and welfare; or to secure the national defense.This project develops six new CI training modules which emphasize the practical use of the advanced CI techniques, especially the tools that implement them, in the context of cybersecurity research. Each training module includes three sections: (1) an overview presented by an invited cybersecurity faculty about his/her research, concluding with a research problem that heavily depends on CI techniques; (2) an introduction of corresponding CI skills, tools and platforms; (3) a hands-on lab session where students will apply the CI techniques to solve the research problem formerly introduced by the cybersecurity faculty. The modules will be delivered via two distinct means: monthly workshops and summer institutes. Six monthly workshops are conducted during academic year, primarily targeting students enrolled at Old Dominion University (ODU). The summer institutes present these six modules to students from local community colleges, Research Experiences for Undergraduates program at ODU, and other Virginia universities; they also include special activities such as field trips, open house for K-12 students, Cyber Night events, cybersecurity career panels, and student competitions. Complementing the workshops and summer institutes, an online continuous learning community is created, which includes a virtual computer lab and a student forum, as a place for students to continue their learning engagement after the face-to-face sessions. Archived workshop materials, as well as additional learning materials are also posted on this online platform as open educational resources, to be made available to the cybersecurity research and education communities. The open-source style development of the learning modules facilitates a wide-range of adoption, adaptations, and contributions in an efficient manner. The project leverages existing and new partnerships to ensure broad participation, and accordingly broaden the adoption of advanced CI techniques in the cybersecurity community. The project employs a rigorous assessment and evaluation plan rooted in diverse metrics of success to improve the curricula and demonstrate its effectiveness. The metrics, which are based on the students' outcomes and exit surveys, are assessed by an independent evaluator. The adoption of the learning modules outside of the training program is also considered as a metric of success.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着网络攻击的数量和复杂程度的增长,网络安全研究人员、工程师和从业者严重依赖于先进的网络基础设施(CI)技术,如大数据、机器学习和并行编程,以及先进的CI平台,如云和高性能计算,来评估网络风险、识别和减轻威胁,并实现深度防御。然而,先进的CI技术并没有被广泛地引入到本科和研究生网络安全课程中。这种缺乏给许多热衷于进行尖端网络安全研究和/或参与先进工业网络安全项目的大四本科生和早期网络安全研究生带来了障碍。该项目引入了一个独特的基于数据的网络安全研究与教育高级培训计划(DeapSECURE),旨在为本科生和研究生提供先进的CI技术,并教会他们使用CI资源、工具和服务,在前沿网络安全研究和工业网络安全项目中取得成功。该项目响应了汉普顿路大都市区、弗吉尼亚联邦和国家对准备充分的网络安全劳动力的迫切需求。因此,它符合国家利益,正如NSF的使命所述:促进科学进步;促进国家健康、繁荣和福利;或者是为了保卫国防。该项目开发了六个新的CI培训模块,强调在网络安全研究背景下实际使用先进的CI技术,特别是实现这些技术的工具。每个培训模块包括三个部分:(1)由受邀的网络安全教师介绍他/她的研究概况,最后提出一个严重依赖CI技术的研究问题;(2)相应CI技能、工具和平台的介绍;(3)实践实验课程,学生将应用CI技术来解决网络安全教师以前介绍的研究问题。这些模块将通过两种不同的方式交付:每月研讨会和暑期学院。每学年举办六个月的研讨会,主要针对在老道明大学(ODU)注册的学生。夏季学院向来自当地社区学院、ODU本科生研究经验项目和其他弗吉尼亚大学的学生提供这六个模块;它们还包括一些特别的活动,如实地考察、面向K-12学生的开放日、网络之夜活动、网络安全职业小组和学生竞赛。作为研讨会和暑期学院的补充,我们创建了一个在线持续学习社区,其中包括一个虚拟计算机实验室和一个学生论坛,作为学生在面对面会议后继续学习的地方。存档的研讨会资料以及其他学习资料也作为开放教育资源发布在这个在线平台上,供网络安全研究和教育界使用。学习模块的开源风格开发以一种有效的方式促进了广泛的采用、调整和贡献。该项目利用现有和新的伙伴关系来确保广泛参与,并相应地扩大网络安全社区对先进CI技术的采用。该项目采用严格的评估和评估计划,以不同的成功指标为基础,以改进课程并证明其有效性。这些指标基于学生的成绩和离校调查,由独立评估机构进行评估。培训计划之外的学习模块的采用也被视为成功的衡量标准。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hunter: HE-Friendly Structured Pruning for Efficient Privacy-Preserving Deep Learning
- DOI:10.1145/3488932.3517401
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yifei Cai;Qiao Zhang;R. Ning;Chunsheng Xin;Hongyi Wu
- 通讯作者:Yifei Cai;Qiao Zhang;R. Ning;Chunsheng Xin;Hongyi Wu
Hibernated Backdoor: A Mutual Information Empowered Backdoor Attack to Deep Neural Networks
- DOI:10.1609/aaai.v36i9.21272
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:R. Ning;Jiang Li;Chunsheng Xin;Hongyi Wu;Chong Wang
- 通讯作者:R. Ning;Jiang Li;Chunsheng Xin;Hongyi Wu;Chong Wang
DeapSECURE Computational Training for Cybersecurity: Progress Toward Widespread Community Adoption
DeapSECURE 网络安全计算培训:社区广泛采用的进展
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Purwanto, Wirawan;Dodge, Bahador;Arcaute, Karina;Sosonkina, Masha;Wu, Hongyi
- 通讯作者:Wu, Hongyi
CLEAR: Clean-up Sample-Targeted Backdoor in Neural Networks
- DOI:10.1109/iccv48922.2021.01614
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Liuwan Zhu;R. Ning;Chunsheng Xin;Chong Wang;Hongyi Wu
- 通讯作者:Liuwan Zhu;R. Ning;Chunsheng Xin;Chong Wang;Hongyi Wu
TrojanFlow: A Neural Backdoor Attack to Deep Learning-based Network Traffic Classifiers
- DOI:10.1109/infocom48880.2022.9796878
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:R. Ning;Chunsheng Xin;Hongyi Wu
- 通讯作者:R. Ning;Chunsheng Xin;Hongyi Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyi Wu其他文献
DeapSECURE Computational Training for Cybersecurity: Third-DeapSECURE Computational Training for Cybersecurity: Third-Year Improvements and Impacts Year Improvements and Impacts
DeapSECURE 网络安全计算培训:第三次 DeapSECURE 网络安全计算培训:第三年的改进和影响 今年的改进和影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bahador Dodge;Jacob Strother;Rosby Asiamah;K. Arcaute;W. Purwanto;M. Sosonkina;Hongyi Wu - 通讯作者:
Hongyi Wu
Distributed Data Query in Intermittently Connected Passive RFID Networks
间歇连接无源 RFID 网络中的分布式数据查询
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:5.3
- 作者:
Zhipeng Yang;Ting Ning;Hongyi Wu - 通讯作者:
Hongyi Wu
Low-Cost Collaborative Mobile Charging for Large-Scale Wireless Sensor Networks, IEEE Transactions on Mobile Computing
大规模无线传感器网络的低成本协作移动充电,IEEE 移动计算汇刊
- DOI:
- 发表时间:
- 期刊:
- 影响因子:7.9
- 作者:
Tang;Baijun Wu;Hongyi Wu;Jian Peng - 通讯作者:
Jian Peng
Self-maintenance scheduling algorithms for next generation wireless networks
下一代无线网络的自维护调度算法
- DOI:
10.1109/glocom.2004.1379128 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Haining Chen;Hua Liu;Hongyi Wu - 通讯作者:
Hongyi Wu
A non-constant weight code approach for fast link assessment in multihop wireless mesh networks
一种用于多跳无线网状网络中快速链路评估的非恒定权重代码方法
- DOI:
10.1108/17427370910991820 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
R. Prasad;Ravi Nelavelli;Hongyi Wu - 通讯作者:
Hongyi Wu
Hongyi Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyi Wu', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: T3-CIDERS: A Train-the-Trainer Approach to Fostering CI- and Data-Enabled Research in Cybersecurity
协作研究:网络培训:实施:中:T3-CIDERS:一种培训师培训方法,促进网络安全中的 CI 和数据支持研究
- 批准号:
2320999 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
- 批准号:
2245250 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
IUCRC Planning Grant Old Dominion University: Center for Wireless Innovation towards Secure, Pervasive, Efficient and Resilient Next G Networks (WISPER)
IUCRC 规划拨款 Old Dominion 大学:实现安全、普遍、高效和有弹性的下一代网络 (WISPER) 的无线创新中心
- 批准号:
2209673 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
IUCRC Planning Grant Old Dominion University: Center for Wireless Innovation towards Secure, Pervasive, Efficient and Resilient Next G Networks (WISPER)
IUCRC 规划拨款 Old Dominion 大学:实现安全、普遍、高效和有弹性的下一代网络 (WISPER) 的无线创新中心
- 批准号:
2244902 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2245129 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
- 批准号:
2120279 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF INCLUDES Planning Grant: Building Cybersecurity Inclusive Pathways towards Higher Education and Research (CIPHER)
NSF 包括规划拨款:构建通向高等教育和研究的网络安全包容性途径 (CIPHER)
- 批准号:
2012941 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2008477 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Safe and Secure Artificial Intelligence Solutions (SAIS)
规划资助:安全可靠的人工智能解决方案工程研究中心(SAIS)
- 批准号:
1840458 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI Acquisition: A Reconfigurable Computing Infrastructure Enabling Interdisciplinary and Collaborative Research in Hampton Roads
MRI 采集:可重新配置的计算基础设施,支持汉普顿路的跨学科和协作研究
- 批准号:
1828593 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
FXR激活驱动MDVs-溶酶体途径降解CiC诱导成骨微环境紊乱的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水稻CIC1蛋白调节光合作用低温适应的分子机理研究
- 批准号:31371551
- 批准年份:2013
- 资助金额:90.0 万元
- 项目类别:面上项目
CIC3-dynamin-1信号通路在神经突触囊泡胞吞过程中的作用及调控机制研究
- 批准号:30901631
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
患者由来がんモデルとプロテオゲノミクスを用いたCIC再構成肉腫の新規治療法の開発
利用患者来源的癌症模型和蛋白质组学开发 CIC 重排肉瘤的新治疗方法
- 批准号:
24K18530 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Knowledge Transfer Network
University of Huddersfield (The) and Impress: The Independent Monitor For The Press CIC KTP 22_23 R5
哈德斯菲尔德大学 (The) 和 Impress:新闻独立监察员 CIC KTP 22_23 R5
- 批准号:
10062893 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Knowledge Transfer Partnership
The Role of CIC-6 in Vascular Control of Blood Pressure
CIC-6 在血管血压控制中的作用
- 批准号:
10877390 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
MRC CIC IAA 2021 London Institute of Medical Sciences
MRC CIC IAA 2021 伦敦医学科学研究所
- 批准号:
MC_PC_21052 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Intramural
Regulation of innate antiviral responses by the DNA-binding transcriptional repressor complex CIC-ATXN1/L
DNA 结合转录抑制复合物 CIC-ATXN1/L 对先天抗病毒反应的调节
- 批准号:
10874145 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Regulation of innate antiviral responses by the DNA-binding transcriptional repressor complex CIC-ATXN1/L
DNA 结合转录抑制复合物 CIC-ATXN1/L 对先天抗病毒反应的调节
- 批准号:
10671677 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Regulation of innate antiviral responses by the DNA-binding transcriptional repressor complex CIC-ATXN1/L
DNA 结合转录抑制复合物 CIC-ATXN1/L 对先天抗病毒反应的调节
- 批准号:
10539709 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
CIC-DUX4陽性肉腫における抗がん剤耐性機序の解明
阐明 CIC-DUX4 阳性肉瘤的抗癌药物耐药机制
- 批准号:
22K16784 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MRC CIC IAA 2021 UK Dementia Research Institute
MRC CIC IAA 2021 英国痴呆症研究所
- 批准号:
MC_PC_21053 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Intramural














{{item.name}}会员




