Self-similar Solutions of Geometric Flows

几何流的自相似解

基本信息

  • 批准号:
    1834824
  • 负责人:
  • 金额:
    $ 13.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-30 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

A geometric flow is the gradient flow associated to a functional on a manifold with a geometric interpretation. Not only is the theory of geometric flows a fundamental subject in mathematics, but it also has potential applications to other scientific fields including computer sciences, material sciences and physics. One of the most important problems in the study of geometric flows is to understand all possible singularities of the flows, which are in turn modeled by self-similar solutions of the flows. The proposed research on the moduli space of such self-similar solutions is expected to broaden and advance the knowledge and techniques both within and outside of mathematics, such as the topology of manifolds, image processing, crystal growths and the large-scale structure of the universe. In the meanwhile, new ideas and tools will be developed in various mathematical disciplines ranging from differential geometry to analysis. In addition, the PI will continue mentoring and organizing seminars and workshops for undergraduates, graduate students and young researchers. The PI will also actively participate in the promotion of women in mathematics to enhance diversity and gender equity in the society.The main objective of this proposed project is to establish various geometric and analytic properties of the space of self-similar solutions of geometric flows. First, the PI, in the continuing collaboration with Brett Kotschwar at the Arizona State University, will apply the Carleman type technique to attack the rigidity problem for noncompact gradient Ricci solitons. Second, appealing to the tools inspired in part by the theory of minimal surfaces, the PI aims to describe a much detailed picture of two-dimensional smooth noncompact self-shrinkers of finite genus of mean curvature flow. To achieve this, the PI will begin with investigating the asymptotic structures at infinity of such self-shrinkers which are conjectured to be regular cones or cylinders. Then the PI intends to address the Cylinder Rigidity Conjecture of Ilmanen concerning the uniqueness of self-shrinking cylinders. At the end, the PI, with Joel Spruck at the Johns Hopkins University, plans to seek the sufficient and necessary conditions of the existence of the asymptotic Dirichlet problem for the self-shrinker equation. Third, in higher dimensions, the PI, joint with Neshan Wickramasekera at the University of Cambridge, will extend the regularity theory of stable minimal submanifolds to derive estimates on the size of singular sets of entropy stable weak self-shrinkers.
几何流是与具有几何解释的流形上的泛函相关联的梯度流。几何流理论不仅是数学中的一个基础学科,而且在计算机科学、材料科学和物理学等其他科学领域也有潜在的应用。几何流动研究中最重要的问题之一是理解流动的所有可能的奇异性,而这些奇异性又由流动的自相似解来模拟。对这种自相似解的模空间的拟议研究有望拓宽和推进数学内外的知识和技术,如流形拓扑、图像处理、晶体生长和宇宙的大尺度结构。与此同时,新的思想和工具将在从微分几何到分析的各种数学学科中发展。此外,PI将继续指导和组织本科生,研究生和年轻研究人员的研讨会和讲习班。PI还将积极参与促进妇女在数学方面的发展,以加强社会的多样性和性别平等。该拟议项目的主要目标是建立几何流自相似解空间的各种几何和分析性质。首先,PI与亚利桑那州立大学的Brett Kotschwar继续合作,将应用Carleman型技术来解决非紧梯度Ricci孤子的刚性问题。其次,呼吁工具的启发,部分理论的极小曲面,PI的目的是描述一个更详细的图片二维光滑非紧自收缩的有限属平均曲率流。为了实现这一点,PI将开始与调查的渐近结构在无穷远的这种自收缩体,这是假定为正常的圆锥或圆柱体。然后,PI打算解决的圆柱体刚度猜想的Ilmanen有关的唯一性的自收缩圆柱。最后,PI与约翰霍普金斯大学的Joel Spruck计划寻求自收缩方程渐近Dirichlet问题存在的充分和必要条件。第三,在更高的维度,PI与剑桥大学的Neshan Wickramasekera合作,将扩展稳定极小子流形的正则性理论,以获得熵稳定弱自收缩奇异集的大小估计。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The space of asymptotically conical self-expanders of mean curvature flow
平均曲率流渐近圆锥自扩张器空间
  • DOI:
    10.1007/s00208-021-02147-0
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Bernstein, Jacob;Wang, Lu
  • 通讯作者:
    Wang, Lu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu Wang其他文献

Instantaneous Characteristics of the Death-Feigning and Arousal Behavior of Eucryptorrhynchus Scrobiculatus and E. Brandti Adults
真隐喙龙和布兰迪成虫假死和唤醒行为的瞬时特征
  • DOI:
    10.1007/s10905-023-09837-4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Lu Wang;Huijuan Li;J. Wen
  • 通讯作者:
    J. Wen
Effects of Gamma Irradiation on the Structure and Mechanical Properties of Wild Silkworms and Bombyx Mori Silk Fibroin Films
伽马辐照对野蚕和家蚕丝素蛋白膜结构和力学性能的影响
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Si;Ya Mei Xu;Y. Jiao;Lu Wang;M. Li
  • 通讯作者:
    M. Li
Research on Unbalanced Sample Segmentation of Remote Sensing Image
遥感图像不平衡样本分割研究
  • DOI:
    10.1088/1742-6596/2025/1/012067
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanping Li;Lu Wang;Lei Zhang;Shiying Wang;Haiwen Chen;Xiaolan Zhu
  • 通讯作者:
    Xiaolan Zhu
Breath alcohol sensor based on hydrogel-gated graphene field-effect transistor
基于水凝胶门控石墨烯场效应晶体管的呼吸酒精传感器
  • DOI:
    10.1016/j.bios.2022.114319
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Songjia Luo;Rongrong Wang;Lu Wang;Hao Qu;Lei Zheng
  • 通讯作者:
    Lei Zheng
Bamboo-inspired lightweight tape suture with hollow and porous structure for tendon repair
受竹子启发的轻质胶带缝合线,具有中空和多孔结构,用于肌腱修复
  • DOI:
    10.1016/j.matdes.2020.108843
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Qian Zhang;Jifu Mao;Chaojing Li;Hui Han;Jing Lin;Fujun Wang;Lu Wang
  • 通讯作者:
    Lu Wang

Lu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu Wang', 18)}}的其他基金

Conference: Doctoral Consortium at Student Research Workshop at the Annual Meeting of the Association for Computational Linguistics
会议:计算语言学协会年会学生研究研讨会上的博士联盟
  • 批准号:
    2307288
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Argument Graph Supported Multi-Level Approach for Argumentative Writing Assistance
论证图支持多层次的议论文写作辅助方法
  • 批准号:
    2302564
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
CRII:SCH: Interactive Explainable Deep Survival Analysis
CRII:SC​​H:交互式可解释深度生存分析
  • 批准号:
    2245739
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Collaborative Research: From User Reviews to User-Centered Generative Design: Automated Methods for Augmented Designer Performance
协作研究:从用户评论到以用户为中心的生成设计:增强设计师性能的自动化方法
  • 批准号:
    2050130
  • 财政年份:
    2021
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2105576
  • 财政年份:
    2021
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Continuing Grant
CAREER: Long Document Summarization with Question-Summary Hierarchy and User Preference Control
职业:具有问题摘要层次结构和用户偏好控制的长文档摘要
  • 批准号:
    2046016
  • 财政年份:
    2021
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2146997
  • 财政年份:
    2021
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Small: Entity- and Event-driven Media Bias Detection
协作研究:III:小型:实体和事件驱动的媒体偏差检测
  • 批准号:
    2127747
  • 财政年份:
    2021
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Geometric Flows and Applications
几何流及其应用
  • 批准号:
    2141529
  • 财政年份:
    2021
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Continuing Grant
Evaluation of Hypothermic Oxygenated Perfusion Ex-Vivo Heart Perfusion to Expand the Donor Pool and Improve Transplant Outcomes
评估低温氧合灌注离体心脏灌注以扩大供体库并改善移植结果
  • 批准号:
    MR/V002074/1
  • 财政年份:
    2020
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Fellowship

相似国自然基金

小麦SIMILAR TO RCD-ONE基因调控氧化胁迫逆境响应的作用机制研究
  • 批准号:
    31771353
  • 批准年份:
    2017
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
分级超级碳纳米管及分级轻质结构的性能研究
  • 批准号:
    10972111
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

PFI-TT: Decentralized, On-Demand Production of Dialysis Solutions and Similar Medical Fluids
PFI-TT:透析溶液和类似医用液体的分散式按需生产
  • 批准号:
    2234509
  • 财政年份:
    2023
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
From Self-similar Solutions to Turbulent Cascades
从自相似解到湍流级联
  • 批准号:
    2032657
  • 财政年份:
    2020
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Self-similar Solutions of Geometric Flows
几何流的自相似解
  • 批准号:
    2018221
  • 财政年份:
    2019
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Self-similar Solutions of Geometric Flows
几何流的自相似解
  • 批准号:
    1406240
  • 财政年份:
    2014
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Standard Grant
Self-similar solutions of geometric flows and GIT stability
几何流和GIT稳定性的自相似解
  • 批准号:
    25247003
  • 财政年份:
    2013
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Space-Time Resonances and Asymptotics; Stability of Self-Similar Solutions
时空共振和渐近;
  • 批准号:
    1101269
  • 财政年份:
    2011
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Continuing Grant
Structure of solutions to the system of equations describing chemotactic aggregation of cellular slime molds
描述细胞粘菌趋化聚集的方程组解的结构
  • 批准号:
    13640216
  • 财政年份:
    2001
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on Singularities of Solutions to Nonlinear Partial Differential Equations
非线性偏微分方程解的奇异性分析
  • 批准号:
    11640173
  • 财政年份:
    1999
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of solutions to Keller-Segel system
Keller-Segel 系统解的结构
  • 批准号:
    11640203
  • 财政年份:
    1999
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of solutions to the differential equations arising in natural phenomina
自然现象中出现的微分方程解的结构
  • 批准号:
    09640191
  • 财政年份:
    1997
  • 资助金额:
    $ 13.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了