Geometric Flows and Applications

几何流及其应用

基本信息

  • 批准号:
    2141529
  • 负责人:
  • 金额:
    $ 17.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Geometric flows have many real-world applications including material sciences, biology and image processing. Mathematically they are parabolic partial differential equations that deform geometric objects to their optimal shapes. In addition to their importance in geometric analysis, they also have potential applications to other mathematical disciplines, such as mathematical physics and low-dimensional topology. This award supports the investigation of two fundamental examples of geometric flows, mean curvature flow and Ricci flow. The PI will develop new ideas and robust techniques that will benefit the study of other geometric partial differential equations and related applications. In addition, the PI will place a strong emphasis on education in differential geometry and related topics through teaching, supervising undergraduate, graduate students and young scholars, and organizing seminars and conferences. The PI will also play an important role in the promotion of women and other underrepresented groups in STEM to enhance diversity and equity in the society.The first part of the project is on the properties of closed hypersurfaces with low entropy. It involves an exploration of global features of the moduli space of asymptotically conical self-expanders of mean curvature flow. An overarching goal is to verify the smooth four-dimensional Schoenflies conjecture for hypersurfaces with low entropy. The second part concerns the variational construction of new examples of asymptotically conical self-expanders. The third part probes the asymptotic structure of soliton solutions to mean curvature flow as well as Ricci flow. The PI aims to show the geometry of these soliton solutions under mild topological restrictions is bounded in various senses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何流在材料科学、生物学和图像处理等领域有着广泛的应用。从数学上讲,它们是抛物型偏微分方程式,可以将几何物体变形成最佳形状。除了它们在几何分析中的重要性外,它们还有可能应用于其他数学学科,如数学物理和低维拓扑学。该奖项支持对几何流的两个基本例子的研究,即平均曲率流和Ricci流。PI将发展出新的思想和稳健的技术,这将有助于其他几何偏微分方程组的研究和相关应用。此外,PI将通过教学、指导本科生、研究生和年轻学者以及组织研讨会和会议,高度重视微分几何和相关主题的教育。PI还将在促进STEM中的妇女和其他代表性不足的群体方面发挥重要作用,以增强社会的多样性和公平性。该项目的第一部分是关于具有低熵的封闭超曲面的性质。它涉及到平均曲率流的渐近锥形自扩张器的模空间的全局特征的探索。一个重要的目标是验证光滑的四维Schoenfly猜想,用于低熵的超曲面。第二部分是渐近锥形自扩张器新实例的变分构造。第三部分讨论了平均曲率流和Ricci流的孤子解的渐近结构。PI旨在展示这些孤子解在温和的拓扑限制下的几何在各种意义上是有界的。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu Wang其他文献

Instantaneous Characteristics of the Death-Feigning and Arousal Behavior of Eucryptorrhynchus Scrobiculatus and E. Brandti Adults
真隐喙龙和布兰迪成虫假死和唤醒行为的瞬时特征
  • DOI:
    10.1007/s10905-023-09837-4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Lu Wang;Huijuan Li;J. Wen
  • 通讯作者:
    J. Wen
Effects of Gamma Irradiation on the Structure and Mechanical Properties of Wild Silkworms and Bombyx Mori Silk Fibroin Films
伽马辐照对野蚕和家蚕丝素蛋白膜结构和力学性能的影响
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Si;Ya Mei Xu;Y. Jiao;Lu Wang;M. Li
  • 通讯作者:
    M. Li
Research on Unbalanced Sample Segmentation of Remote Sensing Image
遥感图像不平衡样本分割研究
  • DOI:
    10.1088/1742-6596/2025/1/012067
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanping Li;Lu Wang;Lei Zhang;Shiying Wang;Haiwen Chen;Xiaolan Zhu
  • 通讯作者:
    Xiaolan Zhu
Breath alcohol sensor based on hydrogel-gated graphene field-effect transistor
基于水凝胶门控石墨烯场效应晶体管的呼吸酒精传感器
  • DOI:
    10.1016/j.bios.2022.114319
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Songjia Luo;Rongrong Wang;Lu Wang;Hao Qu;Lei Zheng
  • 通讯作者:
    Lei Zheng
Bamboo-inspired lightweight tape suture with hollow and porous structure for tendon repair
受竹子启发的轻质胶带缝合线,具有中空和多孔结构,用于肌腱修复
  • DOI:
    10.1016/j.matdes.2020.108843
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Qian Zhang;Jifu Mao;Chaojing Li;Hui Han;Jing Lin;Fujun Wang;Lu Wang
  • 通讯作者:
    Lu Wang

Lu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu Wang', 18)}}的其他基金

Conference: Doctoral Consortium at Student Research Workshop at the Annual Meeting of the Association for Computational Linguistics
会议:计算语言学协会年会学生研究研讨会上的博士联盟
  • 批准号:
    2307288
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Argument Graph Supported Multi-Level Approach for Argumentative Writing Assistance
论证图支持多层次的议论文写作辅助方法
  • 批准号:
    2302564
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
CRII:SCH: Interactive Explainable Deep Survival Analysis
CRII:SC​​H:交互式可解释深度生存分析
  • 批准号:
    2245739
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Collaborative Research: From User Reviews to User-Centered Generative Design: Automated Methods for Augmented Designer Performance
协作研究:从用户评论到以用户为中心的生成设计:增强设计师性能的自动化方法
  • 批准号:
    2050130
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2105576
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
CAREER: Long Document Summarization with Question-Summary Hierarchy and User Preference Control
职业:具有问题摘要层次结构和用户偏好控制的长文档摘要
  • 批准号:
    2046016
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2146997
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Small: Entity- and Event-driven Media Bias Detection
协作研究:III:小型:实体和事件驱动的媒体偏差检测
  • 批准号:
    2127747
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Evaluation of Hypothermic Oxygenated Perfusion Ex-Vivo Heart Perfusion to Expand the Donor Pool and Improve Transplant Outcomes
评估低温氧合灌注离体心脏灌注以扩大供体库并改善移植结果
  • 批准号:
    MR/V002074/1
  • 财政年份:
    2020
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Fellowship
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
  • 批准号:
    2100885
  • 财政年份:
    2020
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric flows and applications
会议:几何流及应用
  • 批准号:
    2316597
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
  • 批准号:
    2307466
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
  • 批准号:
    2307465
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Hydrogel two-phase flows: hydrodynamics and applications
水凝胶两相流:流体动力学和应用
  • 批准号:
    RGPIN-2019-04162
  • 财政年份:
    2022
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Transportation-Based Geometries, Gradient Flows, and Applications to Data Science
基于新型交通的几何形状、梯度流及其在数据科学中的应用
  • 批准号:
    2206069
  • 财政年份:
    2022
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Unsteady Flows with applications to Wind Resilience and Sustainability
非定常流及其在抗风能力和可持续性方面的应用
  • 批准号:
    RGPIN-2017-03874
  • 财政年份:
    2022
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Discovery Grants Program - Individual
Acoustic Streaming Flows Induced by Microbubbles in Viscoelastic Fluids: Fundamentals and Applications to Micro-Rheometry
粘弹性流体中微泡引起的声流流动:微流变测量的基础和应用
  • 批准号:
    2306901
  • 财政年份:
    2022
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Numerical simulation and modelling of non-equilibrium flows in hydro-power applications
水力发电应用中非平衡流的数值模拟和建模
  • 批准号:
    514642-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Collaborative Research and Development Grants
Turbulent flows encountered in northen wind energy applications
北方风能应用中遇到的湍流
  • 批准号:
    RGPIN-2016-03902
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了