RUI: Framework: Data - An Open Semantic Data Framework for Data-Driven Discovery

RUI:框架:数据 - 用于数据驱动发现的开放语义数据框架

基本信息

  • 批准号:
    1835643
  • 负责人:
  • 金额:
    $ 60.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The project makes contributions to the ease of annotating, sharing, and searching heterogeneous data sets. It focuses upon undergraduate training, emphasizing data science capabilities applied to a range of science problems. The project enables aggregation, search, and inference with heterogeneous datasets using a structured framework allowing data and metadata to be linked by encoding the framework as a JavaScript Object Notation (JSON) for Linked Data (JSON-LD) document. The approach builds on existing developments such as the Scientific Data (SciData) framework and associated ontology that has been developed by the PI, and Shape Constraint Language (SHACL) shapes to provide efficient searching, browsing, and visualization of data. The result extends existing approaches to link data and metadata and make data easily discoverable. The activity emphasizes Research in Undergraduate Institutions (RUI), training more than 30 undergraduates, graduate students and a post-doctoral student in the application of data science techniques to an array of science problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目有助于简化注释、共享和搜索异构数据集。 它侧重于本科生培训,强调应用于一系列科学问题的数据科学能力。 该项目使用结构化框架实现异构数据集的聚合、搜索和推理,通过将框架编码为用于关联数据的JavaScript对象表示法(JSON)(JSON-LD)文档,允许数据和元数据链接。 该方法建立在现有的发展,如科学数据(SciData)框架和相关的本体,已开发的PI,形状约束语言(SHACL)形状,以提供有效的搜索,浏览和可视化的数据。 其结果扩展了现有的方法来链接数据和元数据,并使数据易于共享。 该活动强调本科院校的研究(RUI),培训了30多名本科生、研究生和一名博士后学生,将数据科学技术应用于一系列科学问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Chalk其他文献

Stop squandering data: make units of measurement machine-readable
停止浪费数据:使测量单位易于机器读取
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    R. Hanisch;Stuart Chalk;Romain Coulon;S. Cox;Steven Emmerson;Francisco Javier Flamenco Sandoval;Alistair Forbes;Jeremy Frey;Blair Hall;R. Hartshorn;P. Heus;S. Hodson;Kazumoto Hosaka;D. Hutzschenreuter;C. Kang;Susanne Picard;Ryan R White
  • 通讯作者:
    Ryan R White
Biological research and self-driving labs in deep space supported by artificial intelligence
在人工智能支持下的深空生物研究和自动驾驶实验室
  • DOI:
    10.1038/s42256-023-00618-4
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Lauren M. Sanders;Ryan T. Scott;Jason H. Yang;Amina Ann Qutub;Hector Garcia Martin;Daniel C. Berrios;Jaden J. A. Hastings;Jon Rask;Graham Mackintosh;Adrienne L. Hoarfrost;Stuart Chalk;John Kalantari;Kia Khezeli;Erik L. Antonsen;Joel Babdor;Richard Barker;Sergio E. Baranzini;Afshin Beheshti;Guillermo M. Delgado-Aparicio;Benjamin S. Glicksberg;Casey S. Greene;Melissa Haendel;Arif A. Hamid;Philip Heller;Daniel Jamieson;Katelyn J. Jarvis;Svetlana V. Komarova;Matthieu Komorowski;Prachi Kothiyal;Ashish Mahabal;Uri Manor;Christopher E. Mason;Mona Matar;George I. Mias;Jack Miller;Jerry G. Myers;Charlotte Nelson;Jonathan Oribello;Seung-min Park;Patricia Parsons-Wingerter;R. K. Prabhu;Robert J. Reynolds;Amanda Saravia-Butler;Suchi Saria;Aenor Sawyer;Nitin Kumar Singh;Michael Snyder;Frank Soboczenski;Karthik Soman;Corey A. Theriot;David Van Valen;Kasthuri Venkateswaran;Liz Warren;Liz Worthey;Marinka Zitnik;Sylvain V. Costes
  • 通讯作者:
    Sylvain V. Costes
Biomonitoring and precision health in deep space supported by artificial intelligence
人工智能支持下的深空生物监测与精准健康
  • DOI:
    10.1038/s42256-023-00617-5
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Ryan T. Scott;Lauren M. Sanders;Erik L. Antonsen;Jaden J. A. Hastings;Seung-min Park;Graham Mackintosh;Robert J. Reynolds;Adrienne L. Hoarfrost;Aenor Sawyer;Casey S. Greene;Benjamin S. Glicksberg;Corey A. Theriot;Daniel C. Berrios;Jack Miller;Joel Babdor;Richard Barker;Sergio E. Baranzini;Afshin Beheshti;Stuart Chalk;Guillermo M. Delgado-Aparicio;Melissa Haendel;Arif A. Hamid;Philip Heller;Daniel Jamieson;Katelyn J. Jarvis;John Kalantari;Kia Khezeli;Svetlana V. Komarova;Matthieu Komorowski;Prachi Kothiyal;Ashish Mahabal;Uri Manor;Hector Garcia Martin;Christopher E. Mason;Mona Matar;George I. Mias;Jerry G. Myers;Charlotte Nelson;Jonathan Oribello;Patricia Parsons-Wingerter;R. K. Prabhu;Amina Ann Qutub;Jon Rask;Amanda Saravia-Butler;Suchi Saria;Nitin Kumar Singh;Michael Snyder;Frank Soboczenski;Karthik Soman;David Van Valen;Kasthuri Venkateswaran;Liz Warren;Liz Worthey;Jason H. Yang;Marinka Zitnik;Sylvain V. Costes
  • 通讯作者:
    Sylvain V. Costes

Stuart Chalk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
  • 批准号:
    DP240100300
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Discovery Projects
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Continuing Grant
A Process-Based Framework for Open Innovation with Social Media Data
基于流程的社交媒体数据开放式创新框架
  • 批准号:
    DP230102657
  • 财政年份:
    2024
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Discovery Projects
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Building a Collaboration Infrastructure: CyberWater2 -- A Sustainable Data/Model Integration Framework
协作研究:框架:构建协作基础设施:Cyber​​Water2——可持续数据/模型集成框架
  • 批准号:
    2209835
  • 财政年份:
    2023
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
  • 批准号:
    10664706
  • 财政年份:
    2023
  • 资助金额:
    $ 60.58万
  • 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
  • 批准号:
    2232120
  • 财政年份:
    2023
  • 资助金额:
    $ 60.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了