QLC: EAGER: Control of Quantum Dynamics and Catalysis Using Molecular Polaritonics
QLC:EAGER:利用分子极化学控制量子动力学和催化
基本信息
- 批准号:1836529
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chemists routinely study how light interacts with molecules. Optical spectroscopy is an important tool in the characterization of molecular structure and chemical reactions. In recent years there has been a growing interest in an unusual twist of optical spectroscopy: if the container holding the molecules is modified to include two parallel mirrors, light that enters the container will interact with the sample molecules, and also reflect back and forth between the mirrors. If the dimensions of the container just right (a few microns, where a micron is one millionth of a meter), the mixing of light and molecules creates a new kind of particle. These new light-matter hybrids are called "polaritons," and their behavior can be manipulated by changing the dimensions of the cavity or the wavelength of light. In this project funded by the Chemical Structure Dynamics and Mechanism (CSDM-A) program of the Chemistry Division, Professor Kevin Kubarych of the University of Michigan and his students are combining microcavities and advanced laser-based optical spectroscopy to study the behavior of polaritons. They are interested in how polaritons respond to changes in light exposure, and whether the actual chemical reactivity of the molecular parts of the polaritons is different from normal molecules, and whether their reactivity can be controlled simply by changing the dimensions of the container. A potential outcome of this research is the improved efficiency and economy of chemical reactions, perhaps including industrial catalytic processes and those relevant to solar energy conversion.Vibrational strong coupling between molecular vibrational states and cavity modes leads to energy shifted states that have hybrid molecular and optical character. Mode-selective coupling offers the promise to externally modulate chemical structure and energetics, which can be used to manipulate relaxation dynamics, such as excited state charge transfer and ground electronic state electrocatalysis. This proposal aims to (1) greatly expand the scope of coordination complexes coupled to microcavities to develop fundamental understanding of polaritons and their relaxation (vibrational energy relaxation and redistribution, as well as spectral diffusion and coherence transfer); (2) employ polariton-modulated excited state charge transfer in molecular ?forks? to control the movement of electronic wavepackets with polaritonic bridging vibrations; (3) combine microcavities with electrochemistry using thin gold layers as both cavity mirrors and electrodes for electrochemistry and electrocatalysis. The students involved in this project are gaining invaluable experience in ultrafast spectroscopy, quantum dynamics, chemical reaction dynamics and electrocatalysis. Improvements in practical electrocatalysis stand to dramatically enhance our ability to reduce CO2 while generating useful fuels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
化学家通常研究光如何与分子相互作用。 光谱学是表征分子结构和化学反应的重要工具。 近年来,人们对光谱学的一个不寻常的转折越来越感兴趣:如果将容纳分子的容器修改为包括两个平行的镜子,则进入容器的光将与样品分子相互作用,并且也在镜子之间来回反射。如果容器的尺寸恰到好处(几微米,其中一微米是一米的百万分之一),光和分子的混合会产生一种新的粒子。 这些新的光-物质混合体被称为“极化激元”,它们的行为可以通过改变腔的尺寸或光的波长来操纵。在这个由化学系化学结构动力学和机制(CSDM-A)项目资助的项目中,密歇根大学的Kevin Kubarych教授和他的学生将微腔和先进的基于激光的光谱学结合起来,研究极化激元的行为。 他们感兴趣的是极化激元如何响应曝光量的变化,以及极化激元的分子部分的实际化学反应性是否与正常分子不同,以及它们的反应性是否可以简单地通过改变容器的尺寸来控制。这一研究的一个潜在成果是提高化学反应的效率和经济性,可能包括工业催化过程和那些与太阳能转换相关的过程。分子振动态和腔模之间的振动强耦合导致具有混合分子和光学特性的能量移动态。模式选择性耦合提供了从外部调节化学结构和能量学的希望,其可用于操纵弛豫动力学,例如激发态电荷转移和基态电子态电催化。该方案的目的是:(1)极大地扩展配位复合物耦合到微腔的范围,以发展对极化激元及其弛豫(振动能量弛豫和再分布,以及光谱扩散和相干转移)的基本理解;(2)在分子中采用极化激元调制的激发态电荷转移?叉子利用极化激元桥接振动控制电子波包的运动;(3)使用薄金层作为用于电化学和电催化的腔镜和电极,将联合收割机微腔与电化学结合。参与该项目的学生正在获得超快光谱学,量子动力学,化学反应动力学和电催化方面的宝贵经验。实际电催化的改进将极大地提高我们减少二氧化碳的能力,同时产生有用的燃料。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast vibrational dynamics of a solute correlates with dynamics of the solvent
- DOI:10.1063/5.0061770
- 发表时间:2021-10-07
- 期刊:
- 影响因子:4.4
- 作者:Crum, Vivian F.;Kiefer, Laura M.;Kubarych, Kevin J.
- 通讯作者:Kubarych, Kevin J.
Direct comparison of amplitude and geometric measures of spectral inhomogeneity using phase-cycled 2D-IR spectroscopy
- DOI:10.1063/5.0043961
- 发表时间:2021-05-07
- 期刊:
- 影响因子:4.4
- 作者:Duan, Rong;Mastron, Joseph N.;Kubarych, Kevin J.
- 通讯作者:Kubarych, Kevin J.
Isolating Polaritonic 2D-IR Transmission Spectra
- DOI:10.1021/acs.jpclett.1c03198
- 发表时间:2021-11-25
- 期刊:
- 影响因子:5.7
- 作者:Duan, Rong;Mastron, Joseph N.;Kubarych, Kevin J.
- 通讯作者:Kubarych, Kevin J.
Transmission Mode 2D-IR Spectroelectrochemistry of In Situ Electrocatalytic Intermediates
- DOI:10.1021/acs.jpclett.1c00504
- 发表时间:2021-04-09
- 期刊:
- 影响因子:5.7
- 作者:Kiefer, Laura M.;Michocki, Lindsay B.;Kubarych, Kevin J.
- 通讯作者:Kubarych, Kevin J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Kubarych其他文献
An alcove at the acetyl-CoA synthase nickel active site is required for productive substrate CO binding and anaerobic carbon fixation.
乙酰辅酶A合酶镍活性位点处的凹室是生产性底物CO结合和厌氧碳固定所必需的。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Seth Wiley;Claire Griffith;Peter Eckert;A. P. Mueller;Robert Nogle;S. Simpson;Michael Köpke;Mehmet Can;R. Sarangi;Kevin Kubarych;S. Ragsdale - 通讯作者:
S. Ragsdale
Kevin Kubarych的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Kubarych', 18)}}的其他基金
Cavity-Controlled Vibrational Dynamics and Chemical Reactivity with Quantum Strong Coupling
具有量子强耦合的腔控制振动动力学和化学反应性
- 批准号:
1955026 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Site-Specific Time-Resolved Multidimensional Spectroscopy of Electron Transfer Dynamics
电子转移动力学的特定位点时间分辨多维光谱
- 批准号:
1565795 - 财政年份:2016
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Ultrafast Dynamics of Electronic Excited States: Photocatalysis and Photomagnetism
电子激发态的超快动力学:光催化和光磁性
- 批准号:
1300239 - 财政年份:2013
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
CAREER: Time-Resolved Condensed Phase Reaction Dynamics Investigated by Multidimensional Infrared Spectroscopy
职业:通过多维红外光谱研究时间分辨凝聚相反应动力学
- 批准号:
0748501 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
- 批准号:
2337461 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
EAGER: Advancing Adaptive Vibrational Control
EAGER:推进自适应振动控制
- 批准号:
2310300 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
EAGER: Toward a Network-Based Framework for Analysis and Control of Inverter-Dominated Power Grids
EAGER:建立基于网络的逆变器主导电网分析和控制框架
- 批准号:
2333563 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
EAGER: A hybrid dialogue system architecture for symbolic control of deep learning networks
EAGER:用于深度学习网络符号控制的混合对话系统架构
- 批准号:
2232307 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
EAGER: Embodiment of Human Values Profiles in the Control of Autonomous Vehicles
EAGER:人类价值观在自动驾驶车辆控制中的体现
- 批准号:
2146691 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Understanding User Needs for Access Control Systems in Smart Settings
合作研究:EAGER:了解智能设置中访问控制系统的用户需求
- 批准号:
2219921 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Understanding User Needs for Access Control Systems in Smart Settings
合作研究:EAGER:了解智能设置中访问控制系统的用户需求
- 批准号:
2219920 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
EAGER: Magnetothermal Control of Cell Fates and Function
EAGER:细胞命运和功能的磁热控制
- 批准号:
2200991 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
EAGER: Bidirectional Body-Brain-Machine Interface (B3MI) for Control of Complex Dynamics
EAGER:用于控制复杂动力学的双向体脑机接口 (B3MI)
- 批准号:
2124608 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant