EAGER: Bidirectional Body-Brain-Machine Interface (B3MI) for Control of Complex Dynamics
EAGER:用于控制复杂动力学的双向体脑机接口 (B3MI)
基本信息
- 批准号:2124608
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Mind, Machine, and Motor Nexus (M3X) EArly-concept Grant for Exploratory Research (EAGER) project advances a novel vision for implantable bidirectional brain-machine interfaces. Bidirectional brain-machine interfaces read and write information from and to the brain. These technologies have potential to help restore function after neuromotor injury by supplementing intrinsic sensory and motor pathways with engineered pathways that can be used to control assistive devices. However, successful application of the technology requires users to undergo substantial training to learn how to use the interface to control the assistive device. This project will promote the progress of science and advance the national health by advancing the project's overarching goal, which is to understand and shape how the brain can use a bidirectional brain-machine interface to control physical machines with complex dynamics. The specific objectives of the project are: 1) to characterize how the brain learns to combine intrinsic sensory inputs (vision and somatosensation), along with engineered sensory inputs and motor outputs, to control novel devices with complex dynamics; and 2) to test new ways to build high-performance bidirectional interfaces that can co-adapt to enhance user-in-the-loop control. The project team will test bidirectional body and brain interfaces with foundational research using a clinically relevant model that allows the scientifically rigorous study of complex learning dynamics. The research promises to be impactful in the future development of assistive devices and rehabilitation therapies, where methods to design and optimize user-in-the-loop systems will enable improved performance and customization of devices to users' evolving needs and capabilities. The project also supports graduate education through research mentorship.The long-term goal of this work is to develop new knowledge and engineering tools that can be used to optimize user-in-the-loop assistive devices. When a user receives feedback from a device and uses that feedback to alter the device's performance in real-time, the user becomes part of the device control loop. Current brain-machine interfaces are designed using methods from statistics and machine learning that are ill-suited to the closed-loop, co-adaptive, dynamic environments created when the user is in the loop. As a first step towards optimizing multi-pathway sensorimotor interfaces, the research seeks: (1) to discover how sensory-and-motor pathways are integrated as a user learns to control complex dynamics in a bidirectional body-and-brain-machine interface (B3MI); and (2) to apply this knowledge to synthesize and test a bidirectional interface that optimizes user-in-the-loop control of a machine with complex dynamics. The project uses using a clinically relevant non-human primate (NHP) model that facilitates the rigorous study of complex learning dynamics in a way that is impracticable through human subject experimentation. The research has two aims. The first seeks to empirically measure sensorimotor transforms corresponding to different pathways obtained by pairing visual or neural sensory input with manual or neural motor output as a NHP controls interfaces with different machine dynamics (1st and 2nd order). The second seeks to synthesize B3MIs to optimize closed-loop system performance, and to test performance while controlling physical machine dynamics. The research uses high spatiotemporal resolution, invasive neural recording and stimulation techniques in a NHP to create novel closed-loop bidirectional B3MIs. The study will use a novel trajectory-tracking task wherein spectral analysis of measured input and output signals are used to directly quantify sensorimotor transforms. Interfaces will be synthesized using established techniques from robust control theory. Interface performance will be assessed using performance metrics on established assay tasks, and sensorimotor transformations will be quantified using established metrics from human motor control. This work promises scientific and engineering advances that will improve the robustness and utility of bidirectional neural interfaces for assistive device and rehabilitation applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个Mind,Machine,and Motor Nexus(M3X)探索性研究的早期概念资助(AGIRE)项目为植入式双向脑机接口提出了一个新的愿景。双向脑机接口从大脑读取信息,并将信息写入大脑。这些技术有可能通过用可用于控制辅助设备的工程路径来补充固有的感觉和运动路径,来帮助恢复神经运动损伤后的功能。然而,这项技术的成功应用需要用户接受大量培训,以学习如何使用界面来控制辅助设备。该项目将通过推进该项目的总体目标来促进科学进步和国民健康,该项目的总体目标是了解和塑造大脑如何使用双向脑机接口来控制具有复杂动力学的物理机。该项目的具体目标是:1)描述大脑如何学习结合固有的感觉输入(视觉和躯体感觉)以及工程感觉输入和运动输出,以控制具有复杂动力学的新型设备;以及2)测试构建高性能双向接口的新方法,这些接口可以共同适应以增强用户在回路中的控制。该项目团队将使用临床相关模型测试双向身体和大脑与基础研究的接口,该模型允许对复杂的学习动力学进行科学严格的研究。这项研究有望对辅助设备和康复疗法的未来发展产生影响,在这些领域,设计和优化用户在环系统的方法将使设备能够提高性能,并根据用户不断变化的需求和能力进行定制。该项目还通过研究指导来支持研究生教育。这项工作的长期目标是开发新的知识和工程工具,可用于优化用户在环辅助设备。当用户从设备接收反馈并使用该反馈实时改变设备的性能时,用户成为设备控制循环的一部分。当前的脑机接口是使用统计学和机器学习的方法设计的,这些方法不适合当用户处于循环中时创建的闭环系统、共同适应的动态环境。作为优化多路径感觉运动接口的第一步,这项研究试图:(1)发现当用户学习在双向体脑机器接口(B3MI)中控制复杂动力学时,感觉通路和运动通路是如何整合的;以及(2)应用这一知识来合成和测试双向接口,该双向接口优化具有复杂动力学的机器的用户在环控制。该项目使用了一个与临床相关的非人类灵长类(NHP)模型,该模型促进了对复杂学习动力学的严格研究,而通过人类受试者的实验是不可行的。这项研究有两个目的。第一种是在NHP控制具有不同机器动力学(一阶和二阶)的接口时,通过将视觉或神经感觉输入与手动或神经运动输出配对而获得的对应于不同路径的感觉-运动转换进行经验性测量。第二种是合成B3MI以优化闭环系统性能,并在控制物理机器动态的同时测试性能。这项研究使用了高时空分辨率、有创神经记录和刺激技术在NHP中创建了新型的闭环式双向B3MI。这项研究将使用一种新的轨迹跟踪任务,其中测量的输入和输出信号的频谱分析被用来直接量化传感器电机的变换。接口将使用鲁棒控制理论中的既定技术进行综合。界面性能将使用已建立的分析任务的性能指标进行评估,感觉运动转换将使用来自人类运动控制的已建立的指标进行量化。这项工作保证了科学和工程上的进步,将提高用于辅助设备和康复应用的双向神经接口的健壮性和实用性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biosignal-based co-adaptive user-machine interfaces for motor control
用于电机控制的基于生物信号的自适应用户机界面
- DOI:10.1016/j.cobme.2023.100462
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Madduri, Maneeshika M.;Burden, Samuel A.;Orsborn, Amy L.
- 通讯作者:Orsborn, Amy L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Orsborn其他文献
NSF DARE—Transforming modeling in neurorehabilitation: Four threads for catalyzing progress
- DOI:
10.1186/s12984-024-01324-x - 发表时间:
2024-04-03 - 期刊:
- 影响因子:5.200
- 作者:
Francisco J. Valero-Cuevas;James Finley;Amy Orsborn;Natalie Fung;Jennifer L. Hicks;He (Helen) Huang;David Reinkensmeyer;Nicolas Schweighofer;Douglas Weber;Katherine M. Steele - 通讯作者:
Katherine M. Steele
Amy Orsborn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Orsborn', 18)}}的其他基金
CAREER: Characterizing and Optimizing Control in Neural Interfaces
职业:表征和优化神经接口控制
- 批准号:
2338662 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
I-Corps: Translation Potential of Bidirectional Neural Communication for Extended Reality Technologies
I-Corps:双向神经通信在扩展现实技术中的转化潜力
- 批准号:
2419142 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Bidirectional Influences Between Adolescent Social Media Use and Mental Health
青少年社交媒体使用与心理健康之间的双向影响
- 批准号:
10815392 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
ASCENT: Reducing greenhouse emissions with ultra-efficient High-Voltage Monolithic Bidirectional Transistors
ASCENT:利用超高效高压单片双向晶体管减少温室气体排放
- 批准号:
2328137 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
- 批准号:
2318984 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-FR: Bidirectional Neural-Machine Interface for Closed-Loop Control of Prostheses
NSF-FR:用于假肢闭环控制的双向神经机器接口
- 批准号:
2319139 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Endothelial cells communicate with surrounding vascular cells via bidirectional and polarized secretion of extracellular vesicular cargo: Implications for atherosclerotic plaque development.
内皮细胞通过细胞外囊泡货物的双向和极化分泌与周围血管细胞通信:对动脉粥样硬化斑块发展的影响。
- 批准号:
480706 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Metaphysical - Bidirectional interaction between the Metaverse and physical immersive spaces
形而上学——虚拟宇宙和物理沉浸式空间之间的双向互动
- 批准号:
10067754 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
V2VNY Phase 2 - optimising AC bidirectional charging for fleet and non-domestic V2V, V2B or V2G applications
V2VNY 第 2 阶段 - 优化车队和非家用 V2V、V2B 或 V2G 应用的交流双向充电
- 批准号:
10079525 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
BEIS-Funded Programmes
A bidirectional deep brain interface to unravel the pathogenic role of vascular amyloid in Alzheimer's disease
双向深部脑接口揭示血管淀粉样蛋白在阿尔茨海默病中的致病作用
- 批准号:
10901002 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Leveraging Latinx Adolescents, Photovoice, and Longitudinal Data to Disentangle the Bidirectional Effects of Social Media and Mental Health
利用拉丁裔青少年、照片语音和纵向数据来理清社交媒体和心理健康的双向影响
- 批准号:
10815147 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:














{{item.name}}会员




