EAGER: BRAIDING: Transport studies of the anyon braiding

EAGER:编织:任意子编织的传输研究

基本信息

  • 批准号:
    1836707
  • 负责人:
  • 金额:
    $ 29.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Abstract: Quantum computing has been a major research topic of interest in recent years. The realization of quantum computing is based on creation and manipulation of quantum bits (qubits). While this paradigm-changing idea has been known for over 30 years, the realization of quantum computers is still at the very early stage. A major challenge is to minimize quantum decoherence, originated from various factors such as the interaction between a quantum system and the environment. Towards this challenge, a potential solution is topological quantum computing which utilizes qubits whose coherence is protected. The proposed work here aims to experimentally realize the very foundation of topological quantum computing, by studying the charge transport signatures. The proposed work combines theoretical and experimental efforts. The outcome may provide direct guidance for future research on how to control individual topological excitations, potentially leading to breakthroughs in the development of novel qubits for topological quantum computing. The proposed research brings a combination of material science (nanomaterials), nanotechnology, electronics, cryogenics, theoretical condensed matter physics and quantum information science to students involved in the project. In addition, outreach activities, including Stony Brook University Simons summer research program and Department of Physics and Astronomy's World of Physics Friday evening lectures will be carried out to the general public. Technical Abstract: The concept of topological quantum computing, based on anyonic quasiparticle braiding, potentially offers a solution to the decoherence challenge in quantum computing. The objective of the proposed research is to investigate the possibility to manipulate the topological states with a set-up in which the braiding of anyonic excitations is achieved automatically as a part of the transport process without the need for the time-dependent control. The set-up consists of a triple-dot structure, whose transport characteristics manifest the braiding statistics of the anyonic excitation through inter-dot tunneling. Such scheme is studied in two types of material systems. 1) 2DEG with 'antidots' which support fractional quantum Hall states and anyonic charged quasiparticles; 2) topological insulator/s-wave superconductor heterojunctions which support Majorana modes. In both systems, measurements of the source-drain current provide information on the quasiparticle anyon statistics. The proposed work bypasses the difficulty in time-dependent controlling over the individual topological excitations and directly investigate the basis for the topological braiding: the quasiparticle exchange statistics and its transport signature. Understanding the quantum interference of the anyonic excitations and the impact of topological braiding on the anyonic statistics lays the scientific foundation of topological quantum computing. The technical approach proposed here will provide direct answers to how topological braiding impacts on the charge transport characteristics, and how various parameters including temperature and disorder affect quantum coherence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:近年来,量子计算一直是人们感兴趣的一个主要研究课题。量子计算的实现基于量子比特(qubit)的产生和操纵。虽然这种改变范式的想法已经存在了30多年,但量子计算机的实现仍处于非常早期的阶段。一个主要的挑战是最大限度地减少量子退相干,这源于各种因素,如量子系统与环境之间的相互作用。面对这一挑战,一个潜在的解决方案是拓扑量子计算,它利用量子比特,其相干性受到保护。本文提出的工作旨在通过研究电荷输运特征,在实验上实现拓扑量子计算的基础。建议的工作结合了理论和实验的努力。这一结果可能会为未来如何控制个体拓扑激发的研究提供直接指导,从而可能在拓扑量子计算的新型量子位的开发方面取得突破。拟议的研究为参与该项目的学生带来了材料科学(纳米材料),纳米技术,电子学,低温学,理论凝聚态物理学和量子信息科学的结合。此外,将向公众开展外联活动,包括斯托尼布鲁克大学西蒙斯夏季研究计划和物理与天文学系的物理世界星期五晚上讲座。技术摘要:拓扑量子计算的概念,基于任意准粒子编织,潜在地提供了一个解决量子计算中的退相干挑战的方案。建议的研究的目的是调查的可能性,操纵的拓扑状态的设置,其中编织的任意激发自动实现的一部分,而不需要的时间依赖性控制的运输过程。该装置由一个三点结构组成,其输运特性体现了通过点间隧穿的任意子激发的编织统计。在两种类型的材料系统中研究了这种方案。1)2DEG与“antidots”,支持分数量子霍尔态和任意带电准粒子; 2)拓扑绝缘体/s波超导体异质结,支持马约拉纳模式。 在这两个系统中,源漏电流的测量提供了准粒子任意子统计信息。所提出的工作绕过了依赖于时间的控制在个人的拓扑激发的困难,并直接调查的基础上的拓扑编织:准粒子交换统计及其运输签名。理解任意子激发态的量子干涉以及拓扑编织对任意子统计的影响,为拓扑量子计算奠定了科学基础。这里提出的技术方法将直接回答拓扑编织如何影响电荷传输特性,以及包括温度和无序在内的各种参数如何影响量子相干性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dirac fermion quantum Hall antidot in graphene
石墨烯中的狄拉克费米子量子霍尔解毒剂
  • DOI:
    10.1103/physrevb.100.245130
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Mills, Scott M.;Gura, Anna;Watanabe, Kenji;Taniguchi, Takashi;Dawber, Matthew;Averin, Dmitri V.;Du, Xu
  • 通讯作者:
    Du, Xu
In Situ Study of the Impact of Aberration-Corrected Electron-Beam Lithography on the Electronic Transport of Suspended Graphene Devices
  • DOI:
    10.3390/nano10040666
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    N. Mizuno;F. Camino;Xu Du
  • 通讯作者:
    N. Mizuno;F. Camino;Xu Du
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu Du其他文献

Signatures of pseudo diffusive transport in ballistic suspended graphene superconductor junctions
弹道悬浮石墨烯超导结中的赝扩散输运特征
Learning preference: development in smart learning environments
学习偏好:智慧学习环境中的发展
  • DOI:
    10.1108/idd-07-2020-0080
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lizhao Zhang;Xu Du;Jui-Long Hung;Hao Li
  • 通讯作者:
    Hao Li
A Real-time Routing Protocol with Constrained Equivalent Delay in Sensor Networks
传感器网络中具有约束等效延迟的实时路由协议
Interactive Drawing Interface for Editing Scene Graph
用于编辑场景图的交互式绘图界面
Au/Agsub2/subS dimeric nanostructures for highly specific plasmonic sensing of mercury(II)
用于汞(II)高特异性等离子体传感的金/银二聚体纳米结构
  • DOI:
    10.1016/j.cclet.2022.05.005
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    8.900
  • 作者:
    Xinyi Liang;Xu Du;Ao Liu;Zhixiong Cai;Jingwen Li;Maosheng Zhang;Qingxiang Wang;Jingbin Zeng
  • 通讯作者:
    Jingbin Zeng

Xu Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xu Du', 18)}}的其他基金

Localizing and Manipulating Exotic Quasiparticles in Quantum Hall Antidots
量子霍尔解毒剂中奇异准粒子的定位和操纵
  • 批准号:
    2104781
  • 财政年份:
    2021
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
Two dimensional atomic crystals under strain
应变下的二维原子晶体
  • 批准号:
    1808491
  • 财政年份:
    2018
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Hybrid Graphene-Ferroelectric Devices
混合石墨烯铁电器件
  • 批准号:
    1105202
  • 财政年份:
    2011
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant

相似海外基金

Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Discovery Projects
Center for Braiding Indigenous Knowledges and Science (CBIKS)
编织土著知识和科学中心 (CBIKS)
  • 批准号:
    2243258
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Cooperative Agreement
Topological phases by momentum space braiding
动量空间编织的拓扑相
  • 批准号:
    EP/W00187X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Research Grant
Braiding the Environmental and Cultural Importance of Wetlands in Education throughout Mi'kma'ki
将湿地的环境和文化重要性融入整个 Mikmaki 的教育中
  • 批准号:
    577367-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    PromoScience
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
  • 批准号:
    567412-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    PromoScience
Braiding Opportunities in Training, Advocacy, and Networking for Young Scientists (BOTANY Scientists)
为年轻科学家(植物科学家)提供培训、宣传和网络机会
  • 批准号:
    2216268
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Braiding Operation using SFQ Current Pulses for Topological Quantum Computer
拓扑量子计算机中使用 SFQ 电流脉冲的编织操作
  • 批准号:
    21K18708
  • 财政年份:
    2021
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
  • 批准号:
    567412-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 29.92万
  • 项目类别:
    PromoScience
Zero energy modes in vortex cores: Spectroscopy and Majorana carousel braiding
涡核中的零能量模式:光谱学和马约拉纳旋转木马编织
  • 批准号:
    2104757
  • 财政年份:
    2021
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
  • 批准号:
    2037996
  • 财政年份:
    2020
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了