Coarse geometry and applications to the Baum-Connes conjecture
粗略几何及其在 Baum-Connes 猜想中的应用
基本信息
- 批准号:23527961
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2006
- 资助国家:德国
- 起止时间:2005-12-31 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Coarse geometry is concerned with the study of the large scale structure of metric spaces. It has also applications to non-coarse questions. The most important such application is to the calculation of the K-theory of the C*-algebra of a discrete group G (via the Baum-Connes conjecture). To approach this conjecture, one studies (coarse) spaces associated to G. For these one defines different kinds of C*-algebras whose K-theory is related via certain index maps. Using methods from large scale geometry, one then has to show that this index map is an isomorphism. Then, one has to use the relation of the space to the group to descent to the original Baum-Connes conjecture. New developments have lead to an axiomatic characterization of coarse spaces. To many new groups one should assign interesting non-metric coarse spaces with nice properties. Developing new methods, one should be able to push further the applications to the Baum-Connes conjecture. This should also give new insights in other (currently non-coarse) approaches to this conjecture, which might be special cases of these general coarse geometry methods. As a more concrete example we plan to study Cayleygraphs (or more generally random subgraphs of Cayley graphs) and their rescaling limits. The focus will be on the consideration of classical operators and fields on such graphs, in comparison with associated limiting objects. An example are discrete Laplacians (as they are used in image processing).
粗糙几何学研究度量空间的大尺度结构。它也适用于非粗糙的问题。最重要的应用是计算离散群G的C*-代数的K-理论(通过鲍姆-康纳斯猜想)。为了解决这个猜想,人们研究了与G.对于这些定义不同种类的C*-代数,其K-理论是通过一定的指标映射。使用大尺度几何学的方法,然后必须证明这个索引映射是同构的。然后,人们必须使用空间与群的关系来下降到原始的鲍姆-康纳斯猜想。新的发展导致了粗糙空间的公理化特征。对于许多新的群,人们应该赋予有趣的非度量粗糙空间以良好的性质。发展新的方法,人们应该能够进一步推动Baum-Connes猜想的应用。这也应该给新的见解,在其他(目前非粗糙)的方法,这一猜想,这可能是这些一般的粗糙几何方法的特殊情况。作为一个更具体的例子,我们计划研究凯莱图(或更一般的凯莱图的随机子图)和它们的重标度限制。重点将放在考虑经典的运营商和领域,这样的图形,在与相关的限制对象。一个例子是离散拉普拉斯算子(因为它们用于图像处理)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bordism, rho-invariants and the Baum-Connes conjecture
- DOI:10.4171/jncg/2
- 发表时间:2004-07
- 期刊:
- 影响因子:0.9
- 作者:P. Piazza;T. Schick
- 通讯作者:P. Piazza;T. Schick
Groups with torsion, bordism and rho invariants
具有挠率、棱镜和 rho 不变量的群
- DOI:10.2140/pjm.2007.232.355
- 发表时间:2007
- 期刊:
- 影响因子:0.6
- 作者:Paolo Piazza;Thomas Schick
- 通讯作者:Thomas Schick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas Schick其他文献
Professor Dr. Thomas Schick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas Schick', 18)}}的其他基金
Large scale index, positive scalar curvature and manifold topology
大尺度指数、正标量曲率和流形拓扑
- 批准号:
321324296 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Singular Foliations: Desingularization and the Baum-Connes Conjecture
奇异叶状结构:去奇异化和鲍姆-康尼斯猜想
- 批准号:
272988935 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Index theoretic approaches to the classification of positive scalar curvature
正标量曲率分类的索引理论方法
- 批准号:
5406956 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
Geometric Chern characters for p-adic equivariant K-theory and K-homology
p 进等变 K 理论和 K 同调的几何 Chern 特征
- 批准号:
441787895 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
- 批准号:
23K12968 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
- 批准号:
10681111 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
- 批准号:
2306672 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Mechanisms of Rotator Cuff Injury During Manual Wheelchair Propulsion
手动轮椅推进过程中肩袖损伤的机制
- 批准号:
10572578 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Optimization of High Frequency Irreversible Electroporation (H-FIRE) for tumor ablation and immune system activation in pancreatic cancer applications
高频不可逆电穿孔 (H-FIRE) 的优化,用于胰腺癌应用中的肿瘤消融和免疫系统激活
- 批准号:
10659581 - 财政年份:2023
- 资助金额:
-- - 项目类别: