Assessment of predictions of hydrologic function based on aquatic DNA fragments

基于水生 DNA 片段的水文功能预测评估

基本信息

  • 批准号:
    1836768
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

For the safety and security of the public, it is important to be able to estimate how much water flows through rivers and streams at locations where no gauges of flow exist. In these places, the collection of some other type of information can be remarkably useful in understanding flow patterns. This project investigates how fragments of biological material can be used in predicting river and stream flows. The biological material investigated in this project is the deoxyribonucleic acid (DNA) of microbes found within water samples. This material can be collected and analyzed quickly, easily, and inexpensively. By using advanced biological techniques, the DNA found in streams can be translated into the relative abundance of different types of microbes. This project is based on the understanding that different environmental conditions, including flow patterns in rivers, cause different populations of microbes to become more or less abundant. This project supports an interdisciplinary group of faculty and students to develop new tools that relate stream and river microbes to hydrologic flow patterns. The project partners with a local organization focused on connecting under-represented communities with science professionals.This project focuses on the collection and sequencing of streamwater DNA at a suite of long-term gauging stations spanning a range ecohydrologic conditions across the Pacific Northwest. Using 16s rRNA amplicon sequencing, the relative abundance of different microbial community members is quantified at each location, and patterns in community composition is related to river flows with machine learning techniques. These methods are then extended to regional and national level datasets of streamwater microbiome composition to determine the macroscale hydrologic information contained within streamwater DNA at different scales. For the duration of this project, a team consisting of high-school, undergraduate, and graduate students is engaged in advanced biological, hydrologic, and machine learning techniques to investigate connections between streamwater DNA and watershed function. Both hydrologic and microbial tools and techniques developed through this project will be disseminated to the wider community in a variety of forms, including traditional scholarly outlets and as open-source interactive electronic text for general education about hydrology. This project includes training in science, technology, engineering, and mathematics (STEM) for students from high school to the PhD level. The project partners with a local organization focused on connecting under-represented communities with STEM professionals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了公众的安全和保障,重要的是能够估计在没有流量计的地方有多少水流过河流和溪流。在这些地方,收集其他类型的信息对理解流动模式非常有用。本项目研究如何将生物材料碎片用于预测河流和溪流流量。本项目调查的生物材料是水样中发现的微生物脱氧核糖核酸(DNA)。这种材料可以快速、容易和廉价地收集和分析。通过使用先进的生物技术,在溪流中发现的DNA可以转化为不同类型微生物的相对丰度。这个项目是基于这样一种认识,即不同的环境条件,包括河流的流动模式,会导致不同的微生物种群变得或多或少。该项目支持一个跨学科的教师和学生小组开发新的工具,将溪流和河流微生物与水文流动模式联系起来。该项目与一个当地组织合作,重点是将代表性不足的社区与科学专业人员联系起来。该项目的重点是在一套长期测量站收集和测序河水DNA,这些测量站跨越太平洋西北部的一系列生态水文条件。使用16s rRNA扩增子测序,在每个位置量化不同微生物群落成员的相对丰度,并使用机器学习技术将群落组成模式与河流流量相关。然后将这些方法扩展到区域和国家级的河水微生物组组成数据集,以确定不同尺度下河水DNA中包含的宏观水文信息。在这个项目的持续时间内,一个由高中生,本科生和研究生组成的团队从事先进的生物,水文和机器学习技术,以调查溪流DNA和流域功能之间的联系。通过该项目开发的水文和微生物工具和技术将以各种形式传播给更广泛的社区,包括传统的学术渠道和作为关于水文学的普通教育的开放源交互式电子文本。该项目包括为高中至博士水平的学生提供科学、技术、工程和数学(STEM)方面的培训。该项目与一个当地组织合作,致力于将代表性不足的社区与STEM专业人士联系起来。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
River Microbiome Composition Reflects Macroscale Climatic and Geomorphic Differences in Headwater Streams
河流微生物组组成反映了源头溪流的宏观气候和地貌差异
  • DOI:
    10.3389/frwa.2020.574728
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    URycki, Dawn R.;Good, Stephen P.;Crump, Byron C.;Chadwick, Jessica;Jones, Gerrad D.
  • 通讯作者:
    Jones, Gerrad D.
Machine Learning Applications for Chemical Fingerprinting and Environmental Source Tracking Using Non-target Chemical Data
  • DOI:
    10.1021/acs.est.1c06655
  • 发表时间:
    2022-04-05
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Davila-Santiago, Emmanuel;Shi, Cheng;Jones, Gerrad D.
  • 通讯作者:
    Jones, Gerrad D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Good其他文献

A novel approach to increase accuracy in remotely sensed evapotranspiration through basin water balance and flux tower constraints
  • DOI:
    10.1016/j.jhydrol.2025.133824
  • 发表时间:
    2025-12-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Kul Khand;Gabriel B. Senay;MacKenzie Friedrichs;Koong Yi;Joshua B. Fisher;Lixin Wang;Kosana Suvočarev;Arman Ahmadi;Housen Chu;Stephen Good;Kanishka Mallick;Justine Missik;Jacob A. Nelson;David E. Reed;Tianxin Wang;Xiangming Xiao
  • 通讯作者:
    Xiangming Xiao

Stephen Good的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Good', 18)}}的其他基金

Collaborative Research: MSB-ENSA: Leveraging NEON to Build a Predictive Cross-scale Theory of Ecosystem Transpiration
合作研究:MSB-ENSA:利用 NEON 构建生态系统蒸腾的预测性跨尺度理论
  • 批准号:
    1802885
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
  • 批准号:
    DE240100327
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Early Career Researcher Award
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
A paradigm shift for predictions of freshwater harmful cyanobacteria blooms
淡水有害蓝藻水华预测的范式转变
  • 批准号:
    DP240100269
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Projects
The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
  • 批准号:
    MR/X033139/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Fellowship
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
  • 批准号:
    24K17129
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MFB: RNA modifications of frameshifting stimulators: cellular platforms to engineer gene expression by computational mutation predictions and functional experiments
MFB:移码刺激器的RNA修饰:通过计算突变预测和功能实验来设计基因表达的细胞平台
  • 批准号:
    2330628
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Mud pumping under rail tracks: from Micromechanics to Predictions
铁轨下的泥浆泵送:从微观力学到预测
  • 批准号:
    DP240102765
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Projects
CAREER: Harnessing Emergent Simplicity for High-Precision Predictions in High-Diversity Microbial Ecosystems
职业:利用新兴的简单性在高多样性微生物生态系统中进行高精度预测
  • 批准号:
    2340791
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Understanding and improving AMOC forecasts in inter-annual to decadal climate predictions
了解并改进 AMOC 在年际至十年间气候预测中的预测
  • 批准号:
    2890063
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Studentship
Tropical wetland methane emissions - processes and predictions: TropMethane
热带湿地甲烷排放 - 过程和预测:TropMacet
  • 批准号:
    NE/X000885/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了