MFB: RNA modifications of frameshifting stimulators: cellular platforms to engineer gene expression by computational mutation predictions and functional experiments

MFB:移码刺激器的RNA修饰:通过计算突变预测和功能实验来设计基因表达的细胞平台

基本信息

  • 批准号:
    2330628
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

In this Molecular Foundations for Biotechnology (MFB) project, Dr. Tamar Schlick from New York University and Dr. Alain Laederach from the University of North Carolina will develop advanced computational tools to predict and control how viral protein synthesis is affected when the cell’s machinery (the ribosome) shifts and thus changes how the three-letter code in messenger RNA (mRNA) is read. This frameshifting in translating the mRNA triplet code has been found to be preprogrammed in viruses and human cells to modify the expression of gene products and to regulate biochemical processes. This study aims to computationally predict and experimentally test how introducing mutations to mRNA affects its three-dimensional structure and, consequently, programmed frameshifting in prototypical viral genomes. Revealing the specific structural and sequence requirements for frameshifting in prototype viruses will facilitate the design of novel efficient frameshifting elements, with potential applications to viral packaging of genes. This project will provide interdisciplinary training to students in mathematics, computer science, biology, physics, chemistry, and engineering, with particular emphasis on enhancing minority participation in STEM activities. Public outreach efforts will be included to reach general audiences and highlight the intersection of mathematics, biology, computing, and biotechnologies that have implications in human health. Programmed ribosomal frameshifting (PRF) is a widespread mechanism for modifying the gene expressed by altering the mRNA triplet-nucleotide transcript to generate an alternate gene product. Indispensable to many viruses including HIV and SARS-associated coronaviruses for translating overlapping mRNA reading frames, PRF is also a mechanism in endogenous human, eukaryotic and prokaryotic genes. Because PRF has been shown to dramatically influence viral viability or the biochemical regulation of human processes, the modulation of frameshifting defines a platform for engineering gene expression. However, the complex aspects of frameshifting and the structural plasticity of the RNA frameshifting element (FSE) must be understood before engineering and therapeutic strategies can succeed. In this synergistic biological, chemical, mathematical, and computational research program, graph-theory-based tools will be developed to predict FSE mutations for prototype viral systems aimed at substantially lowering frameshifting efficiency as a novel biotechnological strategy against viral infections and related human diseases associated with PRF. The effect of these mutations will be assessed by Luciferase assay measurements, and the resulting FSE structural landscapes analyzed by techniques suitable for RNAs with multiple conformations. Besides an improved understanding of the mechanisms of frameshifting and computational tools for predicting FSE-landscape-altering mutations, this project will produce new biotechnological, RNA modifying tools as potential therapeutic agents against RNA viruses or applicable to human and other genes that employ frameshifting. Applications to viral packaging/drug delivery also arise, as frameshifting is a compact mechanism to store gene coding information and can be exploited to overcome genomic size limitations.This project is jointly funded by the Division of Chemistry (CHE), the Division of Mathematical Sciences (DMS), and the Division of Physics (PHY) in the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个生物技术分子基础(MFB)项目中,来自纽约大学的Tamar Schlick博士和来自北卡罗来纳州大学的Alain Laederach博士将开发先进的计算工具,以预测和控制当细胞的机器(核糖体)发生变化时病毒蛋白质合成如何受到影响,从而改变信使RNA(mRNA)中的三个字母代码的读取方式。已经发现在翻译mRNA三联体密码时的这种移码在病毒和人类细胞中被预编程以修改基因产物的表达并调节生物化学过程。这项研究的目的是计算预测和实验测试如何引入突变的mRNA影响其三维结构,因此,在原型病毒基因组编程移码。揭示原型病毒中移码的特定结构和序列要求将有助于设计新的高效移码元件,并可能应用于基因的病毒包装。该项目将为学生提供数学、计算机科学、生物学、物理学、化学和工程学方面的跨学科培训,特别强调加强少数群体参与STEM活动。将包括公共宣传工作,以接触普通受众,并突出数学,生物学,计算和生物技术的交叉对人类健康的影响。程序性核糖体移码(PRF)是通过改变mRNA三联核苷酸转录物以产生替代基因产物来修饰表达的基因的广泛机制。与包括HIV和SARS相关的冠状病毒在内的许多病毒翻译重叠的mRNA阅读框架不同,PRF也是内源性人类、真核和原核基因中的一种机制。由于PRF已被证明可以显著影响病毒活力或人类过程的生化调节,因此移码的调节定义了工程基因表达的平台。然而,移码的复杂方面和RNA移码元件(FSE)的结构可塑性必须在工程和治疗策略成功之前得到理解。在这个协同生物,化学,数学和计算研究计划中,将开发基于图论的工具来预测原型病毒系统的FSE突变,旨在大幅降低移码效率,作为对抗病毒感染和与PRF相关的相关人类疾病的新型生物技术策略。这些突变的影响将通过荧光素酶测定法测量来评估,并且通过适用于具有多种构象的RNA的技术来分析所得FSE结构景观。除了提高对移码机制的理解和预测FSE景观改变突变的计算工具外,该项目还将产生新的生物技术,RNA修饰工具,作为对抗RNA病毒的潜在治疗剂或适用于人类和其他采用移码的基因。病毒包装/药物递送的应用也出现了,因为移码是一种存储基因编码信息的紧凑机制,可以用来克服基因组大小的限制。以及数学和物理科学理事会(MPS)的物理部(PHY)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamar Schlick其他文献

Nucleosome Clutches in Chromatin are Tightly Regulated by Nucleosome Positions and Linker Histone Density
  • DOI:
    10.1016/j.bpj.2019.11.3370
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Stephanie Portillo;Lucille H. Tsao;Tamar Schlick
  • 通讯作者:
    Tamar Schlick
Biophysical Journal, Volume 99
生物物理学杂志,第 99 卷
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tamar Schlick
  • 通讯作者:
    Tamar Schlick
Modeling and Simulating RNA: Combining Structural, Dynamic, and Evolutionary Perspectives for Coronavirus Applications
RNA 建模和模拟:结合冠状病毒应用的结构、动态和进化视角
Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data
从二维染色体构象捕获数据重建三维基因组结构的技术和挑战
  • DOI:
    10.1016/j.ceb.2023.102209
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Zilong Li;Stephanie Portillo-Ledesma;Tamar Schlick
  • 通讯作者:
    Tamar Schlick
Structural Bioinformatics : RAGPOOLS : RNA-As-Graph-Pools – A Web Server for Assisting the Design of Structured RNA Pools for In Vitro Selection
结构生物信息学:RAGPOOLS:RNA-As-Graph-Pools – 用于协助设计用于体外选择的结构化 RNA 库的 Web 服务器
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Kim;Jin Sup Shin;Shereef Elmetwaly;H. H. Gan;Tamar Schlick
  • 通讯作者:
    Tamar Schlick

Tamar Schlick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamar Schlick', 18)}}的其他基金

Collaborative Research: Unraveling Structural and Mechanistic Aspects of RNA Viral Frameshifting Elements by Graph Theory and Molecular Modeling
合作研究:通过图论和分子建模揭示RNA病毒移码元件的结构和机制
  • 批准号:
    2151777
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
RAPID: Exploring Covid-19 RNA Viral Targets By Graph-Theory-Based Modeling
RAPID:通过基于图论的建模探索 Covid-19 RNA 病毒靶点
  • 批准号:
    2030377
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Workshop Proposal: IMAG Futures Meeting
研讨会提案:IMAG 未来会议
  • 批准号:
    1008193
  • 财政年份:
    2009
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Computational Methods for Tertiary RNA Folding and Novel RNA Design
RNA 三级折叠和新型 RNA 设计的计算方法
  • 批准号:
    0727001
  • 财政年份:
    2007
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Simulating Large-Scale Conformational Rearrangements and Reaction Kinetics Profiles in DNA Polymerase Beta to Interpret DNA Synthesis Fidelity Mechanisms
模拟 DNA 聚合酶 Beta 中的大规模构象重排和反应动力学曲线,以解释 DNA 合成保真度机制
  • 批准号:
    0316771
  • 财政年份:
    2003
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Toward RNA Genomics: A Pilot Study in the Analysis, Design, and Prediction of RNA Structures
RNA 基因组学:RNA 结构分析、设计和预测的初步研究
  • 批准号:
    0201160
  • 财政年份:
    2002
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
International Workshop: Methods for Macromolecular Modeling
国际研讨会:大分子建模方法
  • 批准号:
    0071877
  • 财政年份:
    2000
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Postdoc: Brownian Dynamics of DNA Slithering
博士后:DNA滑动的布朗动力学
  • 批准号:
    9704681
  • 财政年份:
    1997
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
New Algorithms for Large Time-Step Molecular Dynamics Simulations and their Application to Protein and Nucleic Acids
大时间步长分子动力学模拟的新算法及其在蛋白质和核酸中的应用
  • 批准号:
    9310295
  • 财政年份:
    1993
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
PYI: Computation of Macromolecular Structure
PYI:高分子结构的计算
  • 批准号:
    9157582
  • 财政年份:
    1991
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于多模态嵌入的RNA远程同源模板识别方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
RNA剪接失调导致脊肌萎缩症的分子机制研究
  • 批准号:
    JCZRYB202500984
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脑胶质瘤RNA异常代谢与病理功能
  • 批准号:
    JCZRQT202500132
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
RNA结合蛋白PTBP1调控UCP2抑制滋养层细胞氧化应激在子痫前期中的作用及分子机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
长链非编码RNA Malat1通过PTEN/TCF-1促进记忆CD8+ T细胞分化的机
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于小RNA深度测序鉴定重庆地区药用植物病毒病原
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
RNA修饰调控线粒体代谢的机制及其在代谢性疾病防治中的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
环状RNA circSREBF2介导的代谢重编程在甲氨蝶呤耐药类风湿性关节炎中的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
RNA结合基序蛋白5(RBM5)通过调控神经传递影响老年小鼠术后认知功能障碍
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

BRC-BIO: Deciphering the roles of RNA modifications in regulating responses to abiotic stresses in cereal crops
BRC-BIO:解读 RNA 修饰在调节谷类作物非生物胁迫反应中的作用
  • 批准号:
    2312857
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Development of Next-Generation Mass Spectrometry-based de novo RNA Sequencing for all Modifications
开发适用于所有修饰的下一代基于质谱的从头 RNA 测序
  • 批准号:
    10581994
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
The Platelet Transcriptome and Organ Failure After Injury: Discovering Molecular Biomarkers and Preventative Targets through Interrogating Novel RNA Modifications
血小板转录组和损伤后器官衰竭:通过研究新的 RNA 修饰发现分子生物标志物和预防靶点
  • 批准号:
    10711791
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
Novel bioinformatics methods to detect DNA and RNA modifications using Nanopore long-read sequencing
使用 Nanopore 长读长测序检测 DNA 和 RNA 修饰的新型生物信息学方法
  • 批准号:
    10792416
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
Uncovering the Role of RNA Modifications in the Paraspeckle
揭示 RNA 修饰在副斑斑中的作用
  • 批准号:
    10679290
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
RNA Modifications in Health and Disease
健康和疾病中的 RNA 修饰
  • 批准号:
    10754076
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
Dysregulations of functional RNA modifications and hexavalent chromium lungcarcinogenesis
功能性 RNA 修饰失调与六价铬肺癌发生
  • 批准号:
    10835362
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
INVESTIGATE SEQUENCE SPECIFICITY IN THE BIOSYNTHESIS AND RECOGNITION OF RNA CHEMICAL MODIFICATIONS
研究 RNA 化学修饰生物合成和识别中的序列特异性
  • 批准号:
    10714628
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
The role of small RNA modifications in glioma
小RNA修饰在神经胶质瘤中的作用
  • 批准号:
    10840181
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
Role of m6A RNA modifications in AHR-mediated developmental toxicity
m6A RNA 修饰在 AHR 介导的发育毒性中的作用
  • 批准号:
    10647294
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了