EAGER: Braiding of Half-Flux Quantum Vortices

EAGER:半通量量子涡旋的编织

基本信息

  • 批准号:
    1836916
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Abstract: This project is aimed at 'braiding' of the half-flux quantum vortices. 'Braiding' means moving these quantum vortices around each other as a function of time, corresponding to quantum mechanical exchange. These vortices are believed to have unusual quantum mechanical exchange properties, and the ability to braid them is a necessary enabling step towards topological quantum computation. Therefore, the successful braiding of such vortices would be a major achievement in its own right but also a critical enabling milestone along one of the main envisioned routes towards the development of a topological quantum computer. The new ideas and technologies developed here will enable the braiding of non-abelian anyons, a concept that has so far just lived in the imagination of mathematicians and physicists. The project's broader impacts are related to the major societal impacts to which quantum computation might bring, for example, exponentially increased speeds for certain types of computations, which could then enable many new types of scientific and technological endeavors.Technical Abstract: The goal of this project is to make progress towards braiding half-flux quantum vortices in the p-wave spin-triplet superconductor Sr2RuO4. Such half-flux vortices are believed to be non-abelian anyons whose quantum exchange should be distinct from that of fermions and bosons. The braiding of these anyons is considered to be a major enabling step along one of the main envisioned routes towards the development of a topological quantum computer. Efforts in this project include the synthesis of the Sr2RuO4 materials, the testing of the materials, the device fabrication using these materials, as well as a theoretical program to address some of the issues that might be encountered along the way. While this program is unusually challenging and therefore of high risk, the potential rewards for its success are also very high, as it might enable quantum computation protected from many aspects of decoherence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:这个项目的目的是“编织”的半通量量子涡旋。“编织”意味着这些量子漩涡作为时间的函数相互移动,对应于量子力学交换。这些涡旋被认为具有不寻常的量子力学交换特性,编织它们的能力是实现拓扑量子计算的必要步骤。因此,这种涡旋的成功编织本身就是一项重大成就,也是沿着发展拓扑量子计算机的主要设想路线之一的关键里程碑。这里发展的新思想和新技术将使非阿贝尔任意子的编织成为可能,这个概念迄今为止只存在于数学家和物理学家的想象中。该项目的更广泛的影响与量子计算可能带来的重大社会影响有关,例如,某些类型的计算速度呈指数级增长,这可能使许多新类型的科学和技术努力成为可能。技术摘要:该项目的目标是在p波自旋三重态超导体Sr2RuO4中编织半通量量子涡旋方面取得进展。这种半通量涡旋被认为是非阿贝尔任意子,其量子交换应该与费米子和玻色子的量子交换不同。这些任意子的编织被认为是一个主要的使能步骤沿着一个主要的设想路线走向拓扑量子计算机的发展。在这个项目中的努力包括Sr2RuO4材料的合成,材料的测试,使用这些材料的器件制造,以及一个理论程序,以解决一些可能会遇到的问题,沿着的方式。虽然该项目具有不同寻常的挑战性,因此风险很高,但其成功的潜在回报也很高,因为它可能使量子计算免受退相干的许多方面的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Dessau其他文献

Effects, determination, and correction of count rate nonlinearity in multi-channel analog electron detectors.
多通道模拟电子探测器中计数率非线性的影响、确定和校正。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Theodore Reber;N. Plumb;J. Waugh;Daniel Dessau
  • 通讯作者:
    Daniel Dessau

Daniel Dessau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Dessau', 18)}}的其他基金

MRI: Track 3 Acquisition of a Campus-wide Helium Liquefication Plant for the University of Colorado Boulder
MRI:第 3 轨道为科罗拉多大学博尔德分校收购全校园氦液化厂
  • 批准号:
    2320839
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Development of an ultra-resolution ARPES facility.
MRI:开发超分辨率 ARPES 设施。
  • 批准号:
    2216487
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Physics/JILA
REU 网站:物理/JILA
  • 批准号:
    1852563
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
REU Site: Physics/JILA
REU 网站:物理/JILA
  • 批准号:
    1560023
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Discovering Insulating Topological Insulators
DMREF:协作研究:发现绝缘拓扑绝缘体
  • 批准号:
    1534734
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Pump-probe ARPES for Studies of Electron and Phonon Dynamics in Novel Materials
用于研究新型材料中电子和声子动力学的泵浦探针 ARPES
  • 批准号:
    1508785
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Physics/JILA
REU 网站:物理/JILA
  • 批准号:
    1262882
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Research Experience for Undergraduates at Physics/JILA
物理学/JILA本科生的研究经历
  • 批准号:
    1157085
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI-R2: Development of a Time Resolved Ultraviolet Spectroscopies Laboratory
MRI-R2:时间分辨紫外光谱实验室的发展
  • 批准号:
    0960292
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ARPES Studies of CMR Oxides and Related Materials
CMR 氧化物及相关材料的 ARPES 研究
  • 批准号:
    1007014
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Center for Braiding Indigenous Knowledges and Science (CBIKS)
编织土著知识和科学中心 (CBIKS)
  • 批准号:
    2243258
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Topological phases by momentum space braiding
动量空间编织的拓扑相
  • 批准号:
    EP/W00187X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Braiding the Environmental and Cultural Importance of Wetlands in Education throughout Mi'kma'ki
将湿地的环境和文化重要性融入整个 Mikmaki 的教育中
  • 批准号:
    577367-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
  • 批准号:
    567412-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Braiding Opportunities in Training, Advocacy, and Networking for Young Scientists (BOTANY Scientists)
为年轻科学家(植物科学家)提供培训、宣传和网络机会
  • 批准号:
    2216268
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Braiding Operation using SFQ Current Pulses for Topological Quantum Computer
拓扑量子计算机中使用 SFQ 电流脉冲的编织操作
  • 批准号:
    21K18708
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
  • 批准号:
    567412-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Zero energy modes in vortex cores: Spectroscopy and Majorana carousel braiding
涡核中的零能量模式:光谱学和马约拉纳旋转木马编织
  • 批准号:
    2104757
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
  • 批准号:
    2037996
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了