EAGER: Enabling Quantum Leap: Towards Room Temperature Quantum Logic with Topological Exciton Condensates

EAGER:实现量子飞跃:利用拓扑激子凝聚体实现室温量子逻辑

基本信息

  • 批准号:
    1838532
  • 负责人:
  • 金额:
    $ 29.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: Quantum computers promise the next great technology leap. At the heart of a quantum computer are material implementations of quantum bits - qubits - which in the present form are highly sensitive to the environment and are typically only achieved at very low temperatures. This project aims to discover a new type of material that may enable room-temperature quantum computing. The new method is based on electrons and their associated vacancies, also known as holes, in a solid material. When an electron lingers close to a hole, the electrical attraction between the pair leads to the formation of a quantum particle known as an exciton. This project explores the utilization of excitons as qubits for enabling quantum logic devices. Recent studies suggest that excitons may be formed above room temperature in a new type of material known as a topological insulator. The principal investigators use a variety of experimental techniques to understand the nature of excitons in topological insulators, and improve the critical temperature for achieving them, so that they may be sustained at room temperature. This project educates and trains undergraduate and graduate students in the important and rapidly advancing research area of quantum computation, and offers outreach activities targeting K-12 students from underrepresented minority groups.Technical Description: Topological exciton condensation is a fundamentally new concept which may open an unexplored and exciting research area. Our recent experimental studies of three-dimensional topological insulators have revealed unusual non-local photocurrent at liquid nitrogen temperature, indicating a superfluid-like topological exciton condensate. This project builds on these exciting preliminary results and aims to obtain fundamental understanding of topological exciton condensates. Experiments to unambiguously distinguish the free Fermion and exciton mechanisms by conducting electric field dependent photocurrent mapping are performed. Spatially resolved angle-resolved photoemission spectroscopy (micro-ARPES) supports this effort by characterizing the occupied single-particle spectrum of materials platforms where signatures of an excitonic condensate are observed. Ultrafast spectroscopy is carried out to measure exciton lifetime and velocity. The exciton induced spin polarization is explored using Kerr rotation. An even higher onset temperature for exciton condensation is achieved in thinner and more intrinsic samples and other low dimensional topological materials beyond Bi2Se3. The topological exciton condensate, a high-temperature macroscopic quantum state with long coherence lengths and unique spin texture, has a truly promising potential to be implemented in room-temperature quantum computers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子计算机预示着下一个伟大的技术飞跃。量子计算机的核心是量子比特的材料实现——量子位——以目前的形式对环境高度敏感,通常只能在非常低的温度下实现。该项目旨在发现一种可以实现室温量子计算的新型材料。这种新方法是基于固体材料中的电子及其相关的空位(也称为空穴)。当一个电子在空穴附近徘徊时,电子对之间的电吸引力导致一种称为激子的量子粒子的形成。本项目探索利用激子作为量子比特来实现量子逻辑器件。最近的研究表明,激子可以在室温以上的一种被称为拓扑绝缘体的新型材料中形成。主要研究人员使用各种实验技术来了解拓扑绝缘体中激子的性质,并提高实现它们的临界温度,以便它们可以在室温下持续存在。该项目在量子计算这一重要且快速发展的研究领域对本科生和研究生进行教育和培训,并为来自代表性不足的少数群体的K-12学生提供外展活动。技术描述:拓扑激子凝聚是一个全新的概念,它可能打开一个未开发的和令人兴奋的研究领域。我们最近对三维拓扑绝缘体的实验研究揭示了液氮温度下不寻常的非局部光电流,表明了超流体样拓扑激子凝聚。该项目建立在这些令人兴奋的初步结果的基础上,旨在获得对拓扑激子凝聚体的基本理解。通过进行电场相关的光电流映射来明确区分自由费米子和激子机制的实验。空间分辨角分辨光谱学(micro-ARPES)通过表征材料平台的占据单粒子光谱来支持这一努力,其中观察到激子凝聚物的特征。采用超快光谱法测量激子的寿命和速度。利用克尔旋转研究了激子诱导的自旋极化。除了Bi2Se3之外,在更薄、更本征的样品和其他低维拓扑材料中,激子凝结的起始温度更高。拓扑激子凝聚态是一种具有长相干长度和独特自旋织构的高温宏观量子态,在室温量子计算机中具有很好的应用前景。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlocal Chemical Potential Modulation in Topological Insulators Enabled by Highly Mobile Trapped Charges
  • DOI:
    10.1021/acsaelm.0c00701
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasen Hou;Ruijuan Xiao;Senlei Li;Lang Wang;Dong Yu
  • 通讯作者:
    Yasen Hou;Ruijuan Xiao;Senlei Li;Lang Wang;Dong Yu
Nanosecond dynamics in intrinsic topological insulator Bi2−xSbxSe3 revealed by time-resolved optical reflectivity
  • DOI:
    10.1103/physrevb.103.l020301
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Adam L. Gross;Yasen Hou;A. Rossi;Dong Yu;I. Vishik
  • 通讯作者:
    Adam L. Gross;Yasen Hou;A. Rossi;Dong Yu;I. Vishik
Millimetre-long transport of photogenerated carriers in topological insulators
  • DOI:
    10.1038/s41467-019-13711-3
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Yasen Hou;Rui Wang;Ruijuan Xiao;L. McClintock;Henry Clark Travaglini;John Paulus Francia;H. Fetsch;O. Erten;S. Savrasov;Baigeng Wang;A. Rossi;I. Vishik;E. Rotenberg;Dong Yu
  • 通讯作者:
    Yasen Hou;Rui Wang;Ruijuan Xiao;L. McClintock;Henry Clark Travaglini;John Paulus Francia;H. Fetsch;O. Erten;S. Savrasov;Baigeng Wang;A. Rossi;I. Vishik;E. Rotenberg;Dong Yu
Superconducting quantum interference devices made of Sb-doped Bi2Se3 topological insulator nanoribbons
  • DOI:
    10.1016/j.cap.2020.02.020
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    N. Kim;Hong-Seok Kim;Yasen Hou;Dong Yu;Yong-Joo Doh
  • 通讯作者:
    N. Kim;Hong-Seok Kim;Yasen Hou;Dong Yu;Yong-Joo Doh
Modeling of the photocurrent induced by inverse spin Hall effect under local circularly polarized photoexcitation
  • DOI:
    10.1103/physrevb.104.205413
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kuen Wai Tang;B. Wang;H. C. Travaglini;D. Yu
  • 通讯作者:
    Kuen Wai Tang;B. Wang;H. C. Travaglini;D. Yu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dong Yu其他文献

Real-time UHD video super-resolution and transcoding on heterogeneous hardware
异构硬件上的实时超高清视频超分辨率和转码
  • DOI:
    10.1007/s11554-019-00913-7
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Dong Yu;Song Li;Xie Rong;Zhang Wenjun
  • 通讯作者:
    Zhang Wenjun
17-allylamino-17-demethoxygeldanamycin enhances the cytotoxicity of tomor cells irradiated with carbon ions
17-烯丙氨基-17-去甲氧基格尔德霉素增强碳离子照射的tomor细胞的细胞毒性
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miho Noguchi;Ryoichi Hirayama;Dong Yu;Koichi Ando;Ryuichi Okayasu
  • 通讯作者:
    Ryuichi Okayasu
Bifurcation structure and scaling property of a subsonic periodically driven thin panel with geometric nonlinearity
几何非线性亚音速周期性驱动薄板的分岔结构和标度特性
MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure
MetaLogic:细粒度结构的逻辑推理解释
  • DOI:
    10.48550/arxiv.2210.12487
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinya Huang;Hongming Zhang;Ruixin Hong;Xiaodan Liang;Changshui Zhang;Dong Yu
  • 通讯作者:
    Dong Yu
Raman Inks Based on Triple-Bond Containing Polymeric Nanoparticles for Security
基于含有三键聚合物纳米粒子的安全拉曼墨水
  • DOI:
    10.1039/d2nr00788f
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Dong Yu;Yao Shen;Wei Zhu;Ji-Ming Hu;Ai-Guo Shen
  • 通讯作者:
    Ai-Guo Shen

Dong Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dong Yu', 18)}}的其他基金

Understanding highly mobile excitons in halide perovskites
了解卤化物钙钛矿中的高移动激子
  • 批准号:
    2209884
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Elucidating the mechanism of millimeter-long transport of photogenerated carriers in topological insulators
阐明拓扑绝缘体中光生载流子的毫米长传输机制
  • 批准号:
    2105161
  • 财政年份:
    2021
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Direct Optoelectronic Imaging of Nanostructured Halide Perovskites
纳米结构卤化物钙钛矿的直接光电成像
  • 批准号:
    1710737
  • 财政年份:
    2017
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Spatially Resolved Optoelectronics of Strongly Correlated Nanostructures and Mott Transistors
强相关纳米结构和莫特晶体管的空间分辨光电子学
  • 批准号:
    1310678
  • 财政年份:
    2013
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
  • 批准号:
    2240267
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Temperature dependence of optical nonlinearities of monolayer transition-metal dichalcogenides
EAGER:实现量子飞跃:单层过渡金属二硫属化物光学非线性的温度依赖性
  • 批准号:
    1838497
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Electrically tunable, long-distance coherent coupling between room temperature qubits mediated by magnons in low-dimensional magnets
EAGER:实现量子飞跃:由低维磁体中的磁振子介导的室温量子位之间的电可调、长距离相干耦合
  • 批准号:
    1838513
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Topological Nanoparticles as Potential Room-Temperature Qubits
EAGER:实现量子飞跃:拓扑纳米粒子作为潜在的室温量子位
  • 批准号:
    1838504
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Organic Magnonics for room temperature Quantum Logic
EAGER:实现量子飞跃:室温量子逻辑的有机磁振子学
  • 批准号:
    1836989
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Manipulating polariton entanglement for room-temperature quantum logic
EAGER:实现量子飞跃:操纵室温量子逻辑的极化子纠缠
  • 批准号:
    1838276
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Towards Room Temperature Quantum Logic Using Moire Heterostructure Single Quantum Emitters Coupled to Plasmonic Waveguides
EAGER:实现量子飞跃:使用莫尔异质结构单量子发射器耦合到等离子体波导实现室温量子逻辑
  • 批准号:
    1838378
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Room-temperature Photon Blockade and Quantum Gates Using Quantum Dots in 2D Materials
EAGER:实现量子飞跃:在 2D 材料中使用量子点的室温光子封锁和量子门
  • 批准号:
    1838380
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Room temperature Quantum Logic operations Enabled by Quantum Emitter Arrays in 2D artificial Superlattices
EAGER:实现量子飞跃:二维人造超晶格中的量子发射器阵列实现室温量子逻辑运算
  • 批准号:
    1838443
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Nanoengineering of Two-Dimensional and Twisted Ferromagnets Towards Room-Temperature Quantum Logic
EAGER:实现量子飞跃:二维和扭曲铁磁体纳米工程迈向室温量子逻辑
  • 批准号:
    1838456
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了