SCH: INT: Collaborative Research: Learning and Improving Alzheimer's Patient-Caregiver Relationships via Smart Healthcare Technology

SCH:INT:合作研究:通过智能医疗技术学习和改善阿尔茨海默病患者与护理人员的关系

基本信息

  • 批准号:
    1838615
  • 负责人:
  • 金额:
    $ 73.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Over 80% of people with Alzheimer's disease or a related dementia are cared for in their home environments by family members. Family caregivers often report increased anxiety and depression, and many forego their own health needs as the demands of being a family caregiver are sustained over many years. It is also known that poor interactions between patient and caregiver increase the difficulty of providing care. Monitoring reactivity between patient and caregiver could signal when problematic interactions might occur. Just-in-time or even predictive recommendations in those moments could improve these interactions and reduce strain on caregivers. This project develops a monitoring, modeling, and interactive recommendation solution (for caregivers) for in-home dementia patient care that focuses on caregiver-patient relationships. This includes monitoring for mood and stress and analyzing the significance of monitoring those attributes to dementia patient care and subsequent behavior dynamics between patient and caregiver. In addition, novel and adaptive behavioral suggestions at the right moments aim at helping improve familial interactions related to caregiving, which over time should ameliorate the stressful effects of the patient's illness and decrease strain on caregivers. This work could also benefit nursing homes and assisted living facilities by improving care for their residents, and could be useful for other caregiving situations, including the care of children with emotional/behavioral challenges who are cared for at home by their families. Educational modules introduce both healthcare students and technology students to this multidisciplinary area of research.The technical solution consists of a core set of statistical learning based techniques for automated generation of specialized modules required by in-home dementia patient care. Personalization, context, and stages of dementia all contribute to the need for specialized modules; and without new solutions for rapid and automatic generation of these specialized modules, progress in effective treatment and patient/caregiver relationship improvement will be very difficult and slow. There are three main technical components in the solution. The first obtains textual content and prosody from voice and uses machine learning techniques to create classification models. This approach not only monitors patients' behavior, but also caregivers', and infers the underlying dynamics of their interactions, such as changes in mood and stress. The second is the automated creation of classifiers and inference modules tailored to the particular patients and dementia conditions (such as different stages of dementia). The third is an adaptive recommendation system that closes the loop of an in-home behavior monitoring system. The main technical contribution is the quick and accurate development of personalized smart and connected health platforms and the potential for reduced medical costs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超过80%的阿尔茨海默病或相关痴呆症患者在家庭环境中由家庭成员照顾。家庭照顾者经常报告焦虑和抑郁增加,许多人放弃了自己的健康需求,因为多年来一直要求成为家庭照顾者。众所周知,患者和护理人员之间的不良互动增加了提供护理的难度。监测患者和护理人员之间的反应可能会在可能发生问题的相互作用时发出信号。在这些时刻及时甚至预测性的建议可以改善这些互动,并减少对护理人员的压力。该项目开发了一个监测,建模和交互式推荐解决方案(为照顾者)的家庭痴呆症患者护理,重点是患者与患者的关系。这包括监测情绪和压力,并分析监测这些属性对痴呆患者护理的重要性,以及患者和护理人员之间的后续行为动态。此外,在适当的时候提出新颖和适应性的行为建议,旨在帮助改善与照顾有关的家庭互动,随着时间的推移,这应该会减轻患者疾病的压力影响,并减少照顾者的压力。这项工作还可以通过改善对居民的护理来使养老院和辅助生活设施受益,并且可以用于其他护理情况,包括照顾有情绪/行为挑战的儿童,这些儿童在家中由家人照顾。教育模块向医疗专业学生和技术专业学生介绍了这一多学科研究领域。技术解决方案包括一套基于统计学习的核心技术,用于自动生成家庭痴呆患者护理所需的专业模块。个性化,背景和痴呆症的阶段都有助于对专业模块的需求;如果没有快速自动生成这些专业模块的新解决方案,有效治疗和患者/护理人员关系改善的进展将非常困难和缓慢。解决方案中有三个主要的技术组件。第一种方法从语音中获取文本内容和韵律,并使用机器学习技术来创建分类模型。这种方法不仅监测患者的行为,也监测患者的行为,并推断他们相互作用的潜在动力,如情绪和压力的变化。第二个是自动创建分类器和推理模块,为特定的患者和痴呆症状况(如痴呆症的不同阶段)量身定制。第三个是自适应推荐系统,它关闭了家庭行为监控系统的循环。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative Explanations of Recommendations
  • DOI:
    10.1145/3485447.3512031
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aobo Yang;Nan Wang;Renqin Cai;Hongbo Deng;Hongning Wang
  • 通讯作者:
    Aobo Yang;Nan Wang;Renqin Cai;Hongbo Deng;Hongning Wang
Explanation as a Defense of Recommendation
When and Whom to Collaborate with in a Changing Environment: A Collaborative Dynamic Bandit Solution
Asynchronous Upper Confidence Bound Algorithms for Federated Linear Bandits
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuanhao Li;Hongning Wang
  • 通讯作者:
    Chuanhao Li;Hongning Wang
When Are Linear Stochastic Bandits Attackable?
线性随机强盗何时会受到攻击?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tariq Iqbal其他文献

Brain-Derived Neurotrophic Factor Regulates Ishikawa Cell Proliferation through the TrkB-ERK1/2 Signaling Pathway
  • DOI:
    doi: 10.3390/biom10121645
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Maosheng Cao;Qiaoge Niu;XinYu Xiang;Chenfeng Yuan;Tariq Iqbal;Yuwen Huang;Meng Tian;Zijiao Zhao;Chunjin Li;Xu Zhou
  • 通讯作者:
    Xu Zhou
Optimising triage of urgent referrals for suspected IBD: results from the Birmingham IBD inception study
优化疑似 IBD 紧急转诊的分类:伯明翰 IBD 启动研究的结果
  • DOI:
    10.1136/flgastro-2023-102523
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Peter Rimmer;J. Cheesbrough;Jane Harris;M. Love;S. Tull;Asif Iqbal;D. Regan;Rachel Cooney;Karl Hazel;Naveen Sharma;Thomas Dietrich;Iain Chapple;M. N. Quraishi;Tariq Iqbal
  • 通讯作者:
    Tariq Iqbal
WED-251 - Predicting the current and future prevalence of primary sclerosing cholangitis with inflammatory bowel disease (PSC-IBD): a nationwide population-based study
  • DOI:
    10.1016/s0168-8278(23)01009-7
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hannah Crothers;James Ferguson;Tariq Iqbal;Nabil Quraishi;Rachel Cooney;Katherine Reeves;Palak Trivedi
  • 通讯作者:
    Palak Trivedi
Burns First Aid: The Forgotten Public Health Challenge
烧伤急救:被遗忘的公共卫生挑战
Erratum to: The ACCURE-trial: the effect of appendectomy on the clinical course of ulcerative colitis, a randomised international multicenter trial (NTR2883) and the ACCURE-UK trial: a randomised external pilot trial (ISRCTN56523019)
  • DOI:
    10.1186/s12893-015-0113-2
  • 发表时间:
    2016-01-04
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Tjibbe J. Gardenbroek;Thomas D. Pinkney;Saloomeh Sahami;Dion G. Morton;Christianne J. Buskens;Cyriel Y. Ponsioen;Pieter J. Tanis;Mark Löwenberg;Gijs R. van den Brink;Ivo A. M. J. Broeders;Hendrikus J. M. Pullens;Tom Seerden;Maarten J. Boom;Rosalie C. Mallant-Hent;Robert E. G. J. M. Pierik;Juda Vecht;Meindert N. Sosef;Annick B. van Nunen;Bart A. van Wagensveld;Pieter C. F. Stokkers;Michael F. Gerhards;Jeroen M. Jansen;Yair Acherman;Annekatrien C. T. M. Depla;Guido H. H. Mannaerts;Rachel West;Tariq Iqbal;Shrikanth Pathmakanthan;Rebecca Howard;Laura Magill;Baljit Singh;Ye H. Oo;Dmitri Negpodiev;Marcel G. W. Dijkgraaf;Geert R. A. M. D’Haens;Willem A. Bemelman
  • 通讯作者:
    Willem A. Bemelman

Tariq Iqbal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 73.54万
  • 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10392429
  • 财政年份:
    2021
  • 资助金额:
    $ 73.54万
  • 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
  • 批准号:
    2124270
  • 财政年份:
    2021
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014554
  • 财政年份:
    2020
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014552
  • 财政年份:
    2020
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2019389
  • 财政年份:
    2020
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013651
  • 财政年份:
    2020
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了