SCH: INT: Collaborative Research: Novel Computational Methods for Continuous Objective Multimodal Pain Assessment Sensing System (COMPASS)

SCH:INT:协作研究:连续目标多模式疼痛评估传感系统(COMPASS)的新颖计算方法

基本信息

  • 批准号:
    1838796
  • 负责人:
  • 金额:
    $ 61.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Few objective pain assessment techniques are currently available for use in clinical settings. Clinicians typically use subjective pain scales for pain assessment and management, which has resulted in suboptimal treatment plans, delayed responses to patient needs, over-prescription of opioids, and drug-seeking behavior among patients. This project will investigate science-based methods to build a robust Continuous Objective Multimodal Pain Assessment Sensing System (COMPASS) and a clinical interface capable of generating objective measurements of pain from multimodal physiological signals and facial expressions. COMPASS will allow objective measurements that can be used to significantly improve pain assessment, pain management strategies, reduce opioid dependency, and advance the field of pain-related research. The educational plan will include activities to engage patient training, K-12 students, minorities and underrepresented groups, as well as general public. These outcomes will also lead to development of a diverse work force needed to support advanced medical technologies and services.Using advanced biosensing systems, data fusion algorithms and machine learning models, this project will develop a robust, reliable, and accurate pain intensity classification system, COMPASS, for estimating pain intensity experienced by patients in real-time on a 0-10 scale, which is the standard scale used by physicians in clinical settings. In the initial phase of the project, the team will conduct a pilot at Brigham and Women's Hospital to experiment with the different elements for developing the sensing systems and collect data to develop data fusion algorithms and machine learning models. In the later phase of the project, the team will collect an extensive set of data to train and validate the fully implemented COMPASS. Physiological sensor data from electroencephalograph, facial-expression, patient self-reported pain scales, and physician/nurse assessed pain scales will be collected from the subjects as they experience pain modulated by medical therapies that cause patients pain. The project will investigate evidence-based machine learning and feature extraction methods for physiological signals and facial-expression images. This highly interdisciplinary research will make significant contributions to the areas of pain assessment and management, human factors and patient safety.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前很少有客观的疼痛评估技术可用于临床环境。临床医生通常使用主观疼痛量表进行疼痛评估和管理,这导致了次优的治疗计划,对患者需求的延迟反应,阿片类药物的过度处方以及患者的药物寻求行为。该项目将研究以科学为基础的方法,以建立一个强大的连续客观多模态疼痛评估传感系统(COMPASS)和一个临床界面,能够从多模态生理信号和面部表情中生成疼痛的客观测量。COMPASS将允许客观的测量,可用于显着改善疼痛评估,疼痛管理策略,减少阿片类药物依赖,并推进疼痛相关研究领域。教育计划将包括让病人培训、K-12学生、少数民族和代表性不足的群体以及公众参与的活动。这些成果也将导致发展一个多样化的劳动力需要支持先进的医疗技术和服务。使用先进的生物传感系统,数据融合算法和机器学习模型,该项目将开发一个强大的,可靠的,准确的疼痛强度分类系统,COMPASS,用于估计疼痛强度的患者在0-10的规模实时,这是医生在临床环境中使用的标准量表。在项目的初始阶段,该团队将在布里格姆妇女医院进行试点,试验开发传感系统的不同元素,并收集数据以开发数据融合算法和机器学习模型。在项目的后期阶段,该团队将收集大量数据,以培训和验证全面实施的COMPASS。将从受试者中收集来自脑电图、面部表情、患者自我报告的疼痛量表和医生/护士评估的疼痛量表的生理传感器数据,因为受试者经历了由导致患者疼痛的药物治疗调节的疼痛。该项目将研究基于证据的机器学习和生理信号和面部表情图像的特征提取方法。这项高度跨学科的研究将为疼痛评估和管理、人为因素和患者安全等领域做出重大贡献。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An experimental study of objective pain measurement using pupillary response based on genetic algorithm and artificial neural network
  • DOI:
    10.1007/s10489-021-02458-4
  • 发表时间:
    2021-05-17
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Wang, Li;Guo, Yikang;Lin, Yingzi
  • 通讯作者:
    Lin, Yingzi
Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG
  • DOI:
    10.1016/j.neucom.2019.10.023
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Mingxin Yu;Yichen Sun;Bofei Zhu;Lianqing Zhu;Yingzi Lin;Xiaoying Tang;Yikang Guo;Guangkai Sun;M. Dong
  • 通讯作者:
    Mingxin Yu;Yichen Sun;Bofei Zhu;Lianqing Zhu;Yingzi Lin;Xiaoying Tang;Yikang Guo;Guangkai Sun;M. Dong
Cold pressor pain assessment based on EEG power spectrum
基于EEG功率谱的冷压疼痛评估
  • DOI:
    10.1007/s42452-020-03822-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Wang, Li;Xiao, Yan;Urman, Richard D.;Lin, Yingzi
  • 通讯作者:
    Lin, Yingzi
EEG-based tonic cold pain assessment using extreme learning machine
  • DOI:
    10.3233/ida-184388
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingxin Yu;Hao Yan;Jing Han;Yingzi Lin;Lianqing Zhu;Xiaoying Tang;Guangkai Sun;Yanlin He;Yikang Guo
  • 通讯作者:
    Mingxin Yu;Hao Yan;Jing Han;Yingzi Lin;Lianqing Zhu;Xiaoying Tang;Guangkai Sun;Yanlin He;Yikang Guo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingzi Lin其他文献

Analysis of biological dirt on the sewage-source heat pump exchange surface
污水源热泵交换面生物污垢分析
FLEXIBLE INFRARED HEART RATE SENSOR USING QUANTUM DOTS
使用量子点的灵活红外心率传感器
Degradation mechanism of microcystin-LR by Bi2WO6/ZnO/biochar composites
Bi2WO6/ZnO/生物炭复合材料降解微囊藻毒素-LR的机理
  • DOI:
    10.1007/s10934-021-01051-x
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Yingzi Lin;Dongyan Zhang;Li Ji;Yang Zhu;Yang Li;Yi Liu;Xiaochen Liu
  • 通讯作者:
    Xiaochen Liu
Chronic central infusion of orexin-A increases arterial pressure in rats
慢性中枢输注食欲素-A 会增加大鼠的动脉压
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Yingzi Lin;K. Matsumura;T. Tsuchihashi;I. Abe;M. Iida
  • 通讯作者:
    M. Iida
Exploring the Influence of Simulated Road Environments on Cyclist Behavior
探索模拟道路环境对骑车人行为的影响

Yingzi Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingzi Lin', 18)}}的其他基金

2020 Smart and Connected Health Principal Investigators Workshop Advancing Health through Science
2020年智能互联健康首席研究员研讨会通过科学促进健康
  • 批准号:
    2002532
  • 财政年份:
    2019
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
I-Corps: Thin Film Cardiac Sensor
I-Corps:薄膜心脏传感器
  • 批准号:
    1658450
  • 财政年份:
    2016
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
Integrated Individualized Modeling towards Cognitive Control of Human-Machine Systems
人机系统认知控制的集成个性化建模
  • 批准号:
    1333524
  • 财政年份:
    2013
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
CAREER: Bridging Cognitive Science and Sensor Technology: Non-intrusive and Multi-modality Sensing in Human-Machine Interactions
职业:连接认知科学和传感器技术:人机交互中的非侵入式多模态传感
  • 批准号:
    0954579
  • 财政年份:
    2010
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
CNT-Integrated Sensing System for Driver State Detection
用于驾驶员状态检测的 CNT 集成传感系统
  • 批准号:
    0825864
  • 财政年份:
    2008
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 61.39万
  • 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10392429
  • 财政年份:
    2021
  • 资助金额:
    $ 61.39万
  • 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
  • 批准号:
    2124270
  • 财政年份:
    2021
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014554
  • 财政年份:
    2020
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014552
  • 财政年份:
    2020
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2019389
  • 财政年份:
    2020
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013651
  • 财政年份:
    2020
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 61.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了