SCH: INT: Collaborative Research: Patient Specific Multisite Pacing of Diseased Human Hearts

SCH:INT:合作研究:患病人类心脏的患者特定多部位起搏

基本信息

  • 批准号:
    1838873
  • 负责人:
  • 金额:
    $ 121.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Cardiovascular disease is the number one cause of death worldwide. For example, heart failure is a significant source of mortality within the U.S; it is responsible for 1% of all emergency room presentations and contributes to one in every nine deaths. A significant proportion of heart failure patients have concurrent conduction system disease, which will lead to their eventual death. Cardiac resynchronization has proven to be a useful therapy for improving cardiac function as well as reducing mortality in some patients. However, a significant number of patients fail to respond to resynchronization therapy, often due to inadequate pacemaker lead placement. There currently exists no pacemaker system that provides the 'potential' benefits of multisite temporally and spatially precise pacing for resynchronization. To reach the audacious goal of eliminating cardiovascular diseases, new technologies must be developed that will monitor the diseased heart with unprecedented temporal and spatial precision and will manage the pacing of the heart to restore a healthy function of the heart. This project will process data recorded from multiple sites and will generate a pacing therapy specific to the patient in real-time.The award revisits the core foundation of pacemakers to develop temporally and spatially precise pacing at multiple sites for resynchronization. The researchers will develop a robust, well-annotated database of intra-cardiac electrograms (IEGM) from multiple cardiac sites. The focus will be on identifying challenging cases that are clinically difficult to differentiate and, thus, stand to reap the greatest benefit of being able to direct overall algorithm development. This information will be added to the associated metadata file. Data will be collected from a minimum of 150 patients with at least 50 patients from each identified pathophysiology. Pathology of each patient based on data from multiple intra-cardiac recording sites will be identified. The proposed machine-learning pipeline explores the representation of time series using wavelets and then learns transformations of multiple time series using the Lie group framework. This pipeline clusters time-series data to identify the right pathology for the specific patient. In addition, the project explores implementation as an application specific integrated circuit (ASIC) that will be implanted subcutaneously to continuously process intracardiac multi-site recordings as well as to generate temporally and spatially precise pacing patterns. The overall approach is to holistically develop a methodology that can address an extremely low-power implementation of machine learning and signal processing algorithms, by not only combining, but jointly optimizing, algorithmic-, circuit- and architecture-level innovations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
心血管疾病是世界范围内的头号死因。例如,心力衰竭是美国死亡率的一个重要来源;它占所有急诊室就诊的1%,每9例死亡中就有1例是由心力衰竭引起的。相当比例的心力衰竭患者并发传导系统疾病,这将导致他们最终死亡。心脏瓣膜成形术已被证明是一种有效的治疗方法,可改善心脏功能,并降低某些患者的死亡率。然而,大量患者对起搏治疗无效,通常是由于起搏器电极导线放置不当。目前还没有起搏器系统能够提供多部位时间和空间精确起搏的“潜在”受益。为了实现消除心血管疾病的大胆目标,必须开发新技术,以前所未有的时间和空间精度监测患病心脏,并管理心脏起搏以恢复心脏的健康功能。该项目将处理多个部位记录的数据,并实时生成针对患者的起搏治疗。该奖项重新审视了起搏器的核心基础,以开发多个部位的时间和空间精确起搏,以实现心脏起搏。研究人员将开发一个强大的,注释良好的多个心脏部位的心内电图(IEGM)数据库。重点将是识别临床上难以区分的具有挑战性的病例,因此,能够获得指导整体算法开发的最大好处。此信息将添加到关联的元数据文件中。将从至少150例患者中收集数据,每种确定的病理生理学至少有50例患者。将根据多个心内记录部位的数据确定每例患者的病理学。所提出的机器学习管道使用小波来探索时间序列的表示,然后使用李群框架来学习多个时间序列的变换。该管道对时间序列数据进行聚类,以识别特定患者的正确病理。此外,该项目还探索了作为专用集成电路(ASIC)的实现,该专用集成电路将植入皮下,以连续处理心内多部位记录,并生成时间和空间精确的起搏模式。总体思路是,通过整合并联合优化算法、电路和架构级创新,全面开发一种方法,解决机器学习和信号处理算法的极低功耗实现问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力评审标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks
  • DOI:
    10.48550/arxiv.2206.00843
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Fu;Haichuan Yang;Jiayi Yuan;Meng Li;Cheng Wan;Raghuraman Krishnamoorthi;Vikas Chandra;Yingyan Lin
  • 通讯作者:
    Y. Fu;Haichuan Yang;Jiayi Yuan;Meng Li;Cheng Wan;Raghuraman Krishnamoorthi;Vikas Chandra;Yingyan Lin
e-G2C: A 0.14-to-8.31 µJ/Inference NN-based Processor with Continuous On-chip Adaptation for Anomaly Detection and ECG Conversion from EGM
e-G2C:一款基于 0.14 至 8.31 µJ/推理神经网络的处理器,具有连续片上自适应功能,用于 EGM 的异常检测和 ECG 转换
The Geometry of Deep Networks: Power Diagram Subdivision
  • DOI:
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Randall Balestriero;Romain Cosentino;B. Aazhang;Richard Baraniuk
  • 通讯作者:
    Randall Balestriero;Romain Cosentino;B. Aazhang;Richard Baraniuk
RT-RCG: Neural Network and Accelerator Search Towards Effective and Real-time ECG Reconstruction from Intracardiac Electrograms
  • DOI:
    10.1145/3465372
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongan Zhang;Anton Banta;Yonggan Fu;M. John;A. Post;M. Razavi;Joseph R. Cavallaro;B. Aazhang;Yingyan Lin
  • 通讯作者:
    Yongan Zhang;Anton Banta;Yonggan Fu;M. John;A. Post;M. Razavi;Joseph R. Cavallaro;B. Aazhang;Yingyan Lin
ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks
  • DOI:
    10.48550/arxiv.2205.08119
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haoran You;Baopu Li;Huihong Shi;Y. Fu;Yingyan Lin
  • 通讯作者:
    Haoran You;Baopu Li;Huihong Shi;Y. Fu;Yingyan Lin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Behnaam Aazhang其他文献

Reconstructing 12-lead ECG from reduced lead sets using an encoder–decoder convolutional neural network
使用编码器-解码器卷积神经网络从精简导联组重建 12 导联心电图
  • DOI:
    10.1016/j.bspc.2024.107486
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Dorsa EPMoghaddam;Anton Banta;Allison Post;Mehdi Razavi;Behnaam Aazhang
  • 通讯作者:
    Behnaam Aazhang
PO-05-061 A MACHINE LEARNING ALGORITHM FOR PINPOINTING THE ORIGIN OF ARRHYTHMIA
用于精确确定心律失常起源的机器学习算法
  • DOI:
    10.1016/j.hrthm.2025.03.1459
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Dorsa Esmaeilpourmoghaddam;Mathews John;Allison Post;Matthew Segar;Lukas M. Jaworski;Drew Bernard;Payam Safavi-Naeini;Mehdi Razavi;Behnaam Aazhang
  • 通讯作者:
    Behnaam Aazhang
Computational sensitivity evaluation of ultrasound neuromodulation resolution to brain tissue sound speed with robust beamforming
  • DOI:
    10.1038/s41598-025-95396-x
  • 发表时间:
    2025-04-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Boqiang Fan;Wayne Goodman;Sameer A. Sheth;Richard R. Bouchard;Behnaam Aazhang
  • 通讯作者:
    Behnaam Aazhang
Behavioral effects of disrupted direct pathway signal flow caused by dopamine depletion
  • DOI:
    10.1186/1471-2202-14-s1-p205
  • 发表时间:
    2013-07-08
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Samantha R Summerson;Behnaam Aazhang;Caleb T Kemere
  • 通讯作者:
    Caleb T Kemere

Behnaam Aazhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Behnaam Aazhang', 18)}}的其他基金

I-Corps: minimally invasive deep brain stimulation using temporally interfering electromagnetic waves
I-Corps:使用时间干扰电磁波进行微创深部脑刺激
  • 批准号:
    2328599
  • 财政年份:
    2023
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage
EARS:协作研究:全双工认知无线电:增强频谱使用的新设计范式
  • 批准号:
    1547305
  • 财政年份:
    2015
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: A Service Centric Architecture for Efficient Spectral Utilization in Wireless Networks
NetS:小型:协作研究:无线网络中高效频谱利用的以服务为中心的架构
  • 批准号:
    1527811
  • 财政年份:
    2015
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
NCS-FO: Collaborative Research: Micro-scale Real-time Decoding and Closed-loop Modulation of Human Language
NCS-FO:协作研究:人类语言的微尺度实时解码和闭环调制
  • 批准号:
    1533688
  • 财政年份:
    2015
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
SCH: EXP: Collaborative Research: Exploring Sparsity and Spectral-Temporal Decomposition in Real-Time Network Modulation for Intractable Epilepsy
SCH:EXP:合作研究:探索顽固性癫痫实时网络调制中的稀疏性和频谱-时间分解
  • 批准号:
    1406447
  • 财政年份:
    2014
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Interference-Aware Cooperation via Structured Codes: Creating an Empirical Cycle
CIF:媒介:协作研究:通过结构化代码进行干扰感知合作:创建经验循环
  • 批准号:
    1302630
  • 财政年份:
    2013
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Continuing Grant
NEDG: Cooperative Wireless Networks: From Theory to Urban-Scale Trials
NEDG:协作无线网络:从理论到城市规模试验
  • 批准号:
    0832025
  • 财政年份:
    2008
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
A Proposal to Support Students and Young Scientists in 2006 IEEE Communication Theory Workshop in Dorado, Puerto Rico, USA
2006 年美国波多黎各多拉多 IEEE 通信理论研讨会上支持学生和青年科学家的提案
  • 批准号:
    0612383
  • 财政年份:
    2006
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
High Data Rate Wireless Networks: A Power Efficiency Perspective
高数据速率无线网络:电源效率角度
  • 批准号:
    0311398
  • 财政年份:
    2003
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
Wireless Technology: Seamless Multitier Wireless Networks for Multimedia Applications
无线技术:用于多媒体应用的无缝多层无线网络
  • 批准号:
    9979465
  • 财政年份:
    1999
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 121.41万
  • 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10392429
  • 财政年份:
    2021
  • 资助金额:
    $ 121.41万
  • 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
  • 批准号:
    2124270
  • 财政年份:
    2021
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014554
  • 财政年份:
    2020
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014552
  • 财政年份:
    2020
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2019389
  • 财政年份:
    2020
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013651
  • 财政年份:
    2020
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 121.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了