EAGER: Real-Time: Learning-based Optimal Control of Stochastic Nonlinear Systems

EAGER:实时:随机非线性系统的基于学习的最优控制

基本信息

  • 批准号:
    1839527
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The two main challenges in optimal real-time control of complex engineering systems arise from the computational complexity of high-fidelity fundamental models of such systems and the inherent uncertainty stemming from lack of exact understanding of the underlying physical, chemical, and biological phenomena governing the system behavior. High-fidelity models are often prohibitive for real-time decision making because they are too computationally demanding. On the other hand, model uncertainty can compromise the reliability of decision making thus can be detrimental to safe, reliable, and optimal operation of complex systems. In this exploratory research project, a new paradigm for learning-based optimal control that guarantees stability and robustness of uncertain nonlinear systems will be developed by using approximate models of the system and its uncertainty, while optimizing the system performance with respect to an updated model of the system learned online. The prototypical example will focus on cold atmospheric plasma jets that can have significant impact in materials processing and in the emerging field of plasma medicine.The proposed research is motivated by the growing importance of using high-fidelity models for optimal control of engineering systems as well as the theoretical challenges associated with addressing systematic handling of uncertainties, non-conservative control performance, and low computational complexity in a unified optimal control formulation. The ultimate objective is to develop a learning-based optimal control method that leverages high-fidelity knowledge of an uncertain system, ensures safe and robust system operation in the presence of uncertainties, mitigates conservative control performance, and is amenable to real-time computations. High-fidelity models will be used to systematically inform the design and verify the performance of learning-based optimal control via closed-loop simulations under uncertainty. The specific aims of the project are: (1) develop theory and formulations for learning-based optimal control, (2) develop an uncertainty propagation method that is especially suited for performance verification of learning-based optimal control using nonlinear high-fidelity models with arbitrary probabilistic uncertainties, and (3) demonstrate the potential benefits of learning-based optimal control on a complex engineering system, i.e., a cold atmospheric plasma jet testbed. The proposed methodology may find numerous applications beyond the ones involving low-temperature atmospheric plasma jets. In addition to training a graduate student in an emerging multi-disciplinary field, a new upper level undergraduate/graduate course will be developed that integrates basic concepts from data science, Bayesian inference, and robust optimization of complex chemical and biomolecular systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂工程系统最优实时控制的两个主要挑战来自这些系统的高保真基本模型的计算复杂性,以及由于缺乏对控制系统行为的潜在物理、化学和生物现象的精确理解而产生的固有不确定性。高保真模型通常不利于实时决策制定,因为它们对计算的要求太高。另一方面,模型的不确定性会影响决策的可靠性,从而不利于复杂系统的安全、可靠和最优运行。在这个探索性的研究项目中,将通过使用系统及其不确定性的近似模型来开发一种新的基于学习的最优控制范式,以保证不确定非线性系统的稳定性和鲁棒性,同时根据在线学习的系统更新模型来优化系统性能。原型将集中在冷大气等离子体射流上,它可以在材料加工和等离子体医学新兴领域产生重大影响。提出的研究的动机是使用高保真模型进行工程系统最优控制的重要性日益增加,以及在统一的最优控制公式中解决系统处理不确定性,非保守控制性能和低计算复杂度相关的理论挑战。最终目标是开发一种基于学习的最优控制方法,该方法利用对不确定系统的高保真知识,确保在存在不确定性的情况下系统运行的安全性和鲁棒性,减轻保守控制性能,并且适合实时计算。高保真模型将用于系统地为设计提供信息,并通过不确定条件下的闭环仿真验证基于学习的最优控制的性能。该项目的具体目标是:(1)发展基于学习的最优控制的理论和公式,(2)开发一种不确定性传播方法,该方法特别适用于使用具有任意概率不确定性的非线性高保真模型进行基于学习的最优控制的性能验证,以及(3)展示基于学习的最优控制在复杂工程系统(即冷大气等离子体射流试验台)上的潜在好处。除了涉及低温大气等离子体射流之外,所提出的方法可能会找到许多应用。除了在新兴的多学科领域培养研究生外,还将开发一个新的高级本科/研究生课程,该课程整合了数据科学,贝叶斯推理以及复杂化学和生物分子系统的鲁棒优化的基本概念。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Safe Learning-based Model Predictive Control under State- and Input-dependent Uncertainty using Scenario Trees
使用场景树在状态和输入相关的不确定性下基于安全学习的模型预测控制
  • DOI:
    10.1109/cdc42340.2020.9304310
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bonzanini, Angelo D.;Paulson, Joel A.;Mesbah, Ali
  • 通讯作者:
    Mesbah, Ali
Fast approximate learning-based multistage nonlinear model predictive control using Gaussian processes and deep neural networks
  • DOI:
    10.1016/j.compchemeng.2020.107174
  • 发表时间:
    2021-01-06
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Bonzanini, Angelo D.;Paulson, Joel A.;Mesbah, Ali
  • 通讯作者:
    Mesbah, Ali
Learning-Based SMPC for Reference Tracking Under State-Dependent Uncertainty: An Application to Atmospheric Pressure Plasma Jets for Plasma Medicine
Probabilistically Robust Bayesian Optimization for Data-Driven Design of Arbitrary Controllers with Gaussian Process Emulators
使用高斯过程仿真器进行任意控制器数据驱动设计的概率鲁棒贝叶斯优化
Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Mesbah其他文献

A neural master equation framework for multiscale modeling of molecular processes: application to atomic-scale plasma processes
用于分子过程多尺度建模的神经主方程框架:在原子尺度等离子体过程中的应用
  • DOI:
    10.1038/s41524-025-01677-4
  • 发表时间:
    2025-07-15
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Shoubhanik Nath;Joseph R. Vella;David B. Graves;Ali Mesbah
  • 通讯作者:
    Ali Mesbah
Identification of volatile organic compounds (VOCs) by SPME-GC-MS to detect emAspergillus flavus/em infection in pistachios
通过 SPME-GC-MS 鉴定挥发性有机化合物(VOCs)以检测阿月浑子中的黄曲霉感染
  • DOI:
    10.1016/j.foodcont.2023.110033
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Leili Afsah-Hejri;Pravien Rajaram;Jared O'Leary;Jered McGivern;Ryan Baxter;Ali Mesbah;Roya Maboudian;Reza Ehsani
  • 通讯作者:
    Reza Ehsani
Heteroscedastic Bayesian Optimisation for Active Power Control of Wind Farms*
风电场有功功率控制的异方差贝叶斯优化*
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Hoang;Sjoerd Boersma;Ali Mesbah;Lars Imsland
  • 通讯作者:
    Lars Imsland
Optimal Operation of Industrial Batch Crystallizers: A Nonlinear Model-based Control Approach
  • DOI:
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Mesbah
  • 通讯作者:
    Ali Mesbah
Run-indexed time-varying Bayesian optimization with positional encoding for auto-tuning of controllers: Application to a plasma-assisted deposition process with run-to-run drifts
具有位置编码的运行索引时变贝叶斯优化,用于自动调节控制器:在具有运行间漂移的等离子体辅助沉积工艺中的应用

Ali Mesbah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Mesbah', 18)}}的其他基金

ECLIPSE: Adaptable Model Predictive Control on a Chip for Personalized and Point-of-Care Plasma Medicine
ECLIPSE:用于个性化和护理点血浆医学的芯片上的自适应模型预测控制
  • 批准号:
    2317629
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning-Based Scalable Predictive Control Strategies for Heterogeneous Traffic Networks
协作研究:异构交通网络基于学习的可扩展预测控制策略
  • 批准号:
    2130734
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning and Distributional Feedback Control for Fabrication of Advanced Materials
合作研究:先进材料制造的学习和分布反馈控制
  • 批准号:
    2112754
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Predictive Control of Cold Atmospheric Microplasma Jet Arrays for Materials Processing
合作研究:用于材料加工的冷大气微等离子体射流阵列的分布式预测控制
  • 批准号:
    1912772
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Model predictive control under model structure uncertainty for stochastic systems
随机系统模型结构不确定性下的模型预测控制
  • 批准号:
    1705706
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
  • 批准号:
    2329919
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2405142
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151021
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
  • 批准号:
    2210198
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Compact Field Portable Biophotonics Instrument for Real-Time Automated Analysis and Identification of Blood Cells Impact Impacted by COVID-19
EAGER:紧凑型现场便携式生物光子学仪器,用于实时自动分析和识别受 COVID-19 影响的血细胞
  • 批准号:
    2141473
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151020
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: MEMS Enabled Real Time Detection of Pathogens Viruses and Biomarkers
EAGER:MEMS 实现病原体病毒和生物标记物的实时检测
  • 批准号:
    2210471
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Development of an Energy-Harvesting Real-time Under-ice Monitoring System in the Arctic Ocean
EAGER:合作研究:北冰洋能量收集实时冰下监测系统的开发
  • 批准号:
    2134146
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
  • 批准号:
    2141008
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了