Collaborative Research: Learning-Based Scalable Predictive Control Strategies for Heterogeneous Traffic Networks
协作研究:异构交通网络基于学习的可扩展预测控制策略
基本信息
- 批准号:2130734
- 负责人:
- 金额:$ 27.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The widespread adoption of connected and automated vehicle technology is likely to take place over a number of years as the technology becomes more commonly accepted by the public and approved by regulatory authorities. Until then, it is essential to develop traffic management strategies that consider the uncertainty associated with heterogeneities in traffic networks and understand the extent to which these strategies improve the performance of traffic networks. This research project aims to develop and validate infrastructure- and vehicle-based control strategies to enhance heterogeneous traffic networks, addressing human-driven and automated vehicles, mobility, and energy efficiency. The project outcomes will be of interest to municipalities and transportation agencies, the automotive industry, and equipment manufacturers. Specifically, the control approaches will be of value to transportation agencies in understanding how infrastructure-based strategies can be exploited to improve energy efficiency and mobility in mixed traffic environments. Real-time control algorithms developed for autonomous vehicles can help the automotive industry determine a set of protocols that address the needs for safe and effective navigation in a mixed traffic network. Further, the models and techniques developed in this research are expected to have implications for a wide range of applications where the system's behavior can be modeled as an uncertain heterogeneous system, such as aerial and ground mobile robots operating in search and rescue missions. The educational plan is designed to impact graduate and undergraduate students, K-12 students, and minority students to prepare and engage a diverse STEM workforce.This collaborative research aims to develop a framework for tractable modeling and optimal control of a heterogeneous traffic network consisting of autonomous and human-driven vehicles. This goal will be realized by combining data-driven modeling of uncertain systems, stochastic model predictive control, and distributed optimization. The project defines three research objectives: (1) development of distributed learning- and scenario-based model predictive control methods at the upper (macroscopic) level wherein functional variational Bayesian neural networks will be used to model the state- and input-dependent uncertainty associated with the heterogeneity in the traffic network, and distributed optimization algorithms will be used to enhance the computational efficiencies of the proposed control approach; (2) development of distributed cautious model predictive control-based approaches for heterogeneous multi-agent systems at the lower (microscopic) level to ensure the safety of individual vehicles while tracking the desired reference command set by the macroscopic-level controller; (3) test the effectiveness of the hierarchical learning-based control paradigm for both urban and highway traffic networks using the PTV-VISSIM traffic simulation software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着联网和自动化汽车技术越来越多地被公众接受并得到监管机构的批准,这种技术的广泛采用可能会在几年内发生。在此之前,至关重要的是制定交通管理策略,考虑交通网络中与异质性相关的不确定性,并了解这些策略在多大程度上改善了交通网络的性能。该研究项目旨在开发和验证基于基础设施和车辆的控制策略,以增强不同类型的交通网络,解决人工驾驶和自动化车辆、机动性和能源效率问题。项目成果将引起市政当局和运输机构、汽车行业和设备制造商的兴趣。具体地说,这些控制方法将有助于运输机构了解如何利用基于基础设施的战略来提高混合交通环境中的能源效率和机动性。为自动驾驶车辆开发的实时控制算法可以帮助汽车行业确定一套协议,以满足混合交通网络中安全有效的导航需求。此外,本研究中开发的模型和技术有望在广泛的应用中产生影响,在这些应用中,系统的行为可以被建模为不确定的异质系统,例如执行搜索和救援任务的空中和地面移动机器人。该教育计划旨在影响研究生和本科生、K-12学生和少数族裔学生准备和参与多样化的STEM工作。这项合作研究旨在开发一个框架,用于对由自动驾驶和人工驾驶车辆组成的异质交通网络进行易处理的建模和优化控制。这一目标将通过结合不确定系统的数据驱动建模、随机模型预测控制和分布式优化来实现。该项目确定了三个研究目标:(1)在上层(宏观)发展基于学习和情景的分布式模型预测控制方法,其中将使用泛函变分贝叶斯神经网络对与交通网络中的异质性相关的状态和输入相关的不确定性进行建模,并将使用分布式优化算法来提高所提出的控制方法的计算效率;(2)在较低(微观)级别开发基于分布式谨慎模型预测控制的方法,以确保单个车辆的安全,同时跟踪宏观层控制器设定的期望参考命令;(3)使用PTV-VISSIM交通模拟软件测试基于分层学习的控制范例在城市和公路交通网络中的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Traffic Congestion Control Using Distributed Extremum Seeking and Filtered Feedback Linearization Control Approaches
- DOI:10.1109/lcsys.2022.3229267
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Pouria Karimi Shahri;B. Homchaudhuri;S. Pulugurtha;A. Mesbah;A. Ghasemi
- 通讯作者:Pouria Karimi Shahri;B. Homchaudhuri;S. Pulugurtha;A. Mesbah;A. Ghasemi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Mesbah其他文献
A neural master equation framework for multiscale modeling of molecular processes: application to atomic-scale plasma processes
用于分子过程多尺度建模的神经主方程框架:在原子尺度等离子体过程中的应用
- DOI:
10.1038/s41524-025-01677-4 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:11.900
- 作者:
Shoubhanik Nath;Joseph R. Vella;David B. Graves;Ali Mesbah - 通讯作者:
Ali Mesbah
Identification of volatile organic compounds (VOCs) by SPME-GC-MS to detect emAspergillus flavus/em infection in pistachios
通过 SPME-GC-MS 鉴定挥发性有机化合物(VOCs)以检测阿月浑子中的黄曲霉感染
- DOI:
10.1016/j.foodcont.2023.110033 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:6.300
- 作者:
Leili Afsah-Hejri;Pravien Rajaram;Jared O'Leary;Jered McGivern;Ryan Baxter;Ali Mesbah;Roya Maboudian;Reza Ehsani - 通讯作者:
Reza Ehsani
Heteroscedastic Bayesian Optimisation for Active Power Control of Wind Farms*
风电场有功功率控制的异方差贝叶斯优化*
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
K. Hoang;Sjoerd Boersma;Ali Mesbah;Lars Imsland - 通讯作者:
Lars Imsland
Optimal Operation of Industrial Batch Crystallizers: A Nonlinear Model-based Control Approach
- DOI:
- 发表时间:
2010-12 - 期刊:
- 影响因子:0
- 作者:
Ali Mesbah - 通讯作者:
Ali Mesbah
Run-indexed time-varying Bayesian optimization with positional encoding for auto-tuning of controllers: Application to a plasma-assisted deposition process with run-to-run drifts
具有位置编码的运行索引时变贝叶斯优化,用于自动调节控制器:在具有运行间漂移的等离子体辅助沉积工艺中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kwanghyun Cho;Ketong Shao;Ali Mesbah - 通讯作者:
Ali Mesbah
Ali Mesbah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Mesbah', 18)}}的其他基金
ECLIPSE: Adaptable Model Predictive Control on a Chip for Personalized and Point-of-Care Plasma Medicine
ECLIPSE:用于个性化和护理点血浆医学的芯片上的自适应模型预测控制
- 批准号:
2317629 - 财政年份:2023
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: Learning and Distributional Feedback Control for Fabrication of Advanced Materials
合作研究:先进材料制造的学习和分布反馈控制
- 批准号:
2112754 - 财政年份:2021
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: Distributed Predictive Control of Cold Atmospheric Microplasma Jet Arrays for Materials Processing
合作研究:用于材料加工的冷大气微等离子体射流阵列的分布式预测控制
- 批准号:
1912772 - 财政年份:2019
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
EAGER: Real-Time: Learning-based Optimal Control of Stochastic Nonlinear Systems
EAGER:实时:随机非线性系统的基于学习的最优控制
- 批准号:
1839527 - 财政年份:2018
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Model predictive control under model structure uncertainty for stochastic systems
随机系统模型结构不确定性下的模型预测控制
- 批准号:
1705706 - 财政年份:2017
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330154 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 27.67万 - 项目类别:
Standard Grant