EAGER: Real-Time: Learning, Selection, and Control in Residential Demand Response for Grid Reliability
EAGER:实时:住宅需求响应中的学习、选择和控制以提高电网可靠性
基本信息
- 批准号:1839632
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As renewable energy sources increase and conventional generators retire, demand response (DR) has been utilized to address the reliability issue on balancing real-time demand and supply in power grids. However, the potential of residential DR, which is the largest share of electricity demands, has not been fully exploited in practice. Existing pilots reveal many issues, such as i) small monetary rewards which play a limited role in user participation, ii) user dissatisfaction when utility companies exploit DR resources extensively, and iii) the lack of reliability due to the unpredictability of user behavior. In collaboration with ThinkEco Inc, this proposal will develop novel and applicable approaches for residential DR with provable guarantees. The method will learn DR behavior, select the correct residential users, and automatically control residential appliances -- all in the service of enhancing system reliability. The research will be tested and validated on real-world residential DR programs using ThinkEco platforms. The research results will advance real-time learning for human-in-the-loop societal systems with applications ranging from transportation to power grids to AI-enabled systems of the future. The team is strongly committed to providing opportunities in STEM to K-12, women, and under-represented minorities. Moreover, the close collaboration between academia and industry promises a fast and effective transition of academic results to industry practice. Specifically, by understanding users' energy consumption behavior from both historical and real-time measurements, and adjusting user selection and control strategies in real-time, this proposed research will invent DR learning and control mechanisms to satisfy various power grid operation requirements. A major theme in this proposal is to close the loop between learning (exploration) and control (exploitation) in human-in-the-loop societal systems: how to learn (explore) user behavior while taking good control actions (exploitation) at the same time. There is a fundamental tradeoff between exploration and exploitation, and the proposed research aims to uncover the tradeoff and design real-time decision-making rules to achieve near-optimal performance for residential DR. Different from the conventional approaches to learning in computer science or statistics, this proposal aims to tackle the challenge of intertwined interactions between human users and the engineered systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着可再生能源的增加和传统发电机的退役,需求响应(DR)已被用来解决平衡电网中的实时需求和供应的可靠性问题。然而,住宅DR的潜力,这是电力需求的最大份额,在实践中尚未得到充分利用。现有的试点揭示了许多问题,例如i)在用户参与中发挥有限作用的小额货币奖励,ii)当公用事业公司广泛利用DR资源时用户不满,以及iii)由于用户行为的不可预测性而缺乏可靠性。该提案将与ThinkEco Inc.合作,为住宅DR开发新颖且适用的方法,并提供可证明的担保。该方法将学习DR行为,选择正确的住宅用户,并自动控制住宅电器-所有这些都是为了提高系统可靠性。该研究将使用ThinkEco平台在现实世界的住宅DR程序上进行测试和验证。研究结果将推进人在环社会系统的实时学习,应用范围从交通到电网到未来的人工智能系统。该团队坚定地致力于为K-12,妇女和代表性不足的少数民族提供STEM机会。此外,学术界和工业界之间的密切合作,保证了学术成果快速有效地转化为工业实践。具体而言,通过从历史和实时测量中了解用户的能耗行为,并实时调整用户选择和控制策略,本研究将发明DR学习和控制机制,以满足各种电网运行要求。该提案的一个主要主题是在人在环社会系统中关闭学习(探索)和控制(利用)之间的循环:如何学习(探索)用户行为,同时采取良好的控制行动(利用)。 探索和开发之间存在根本的权衡,拟议的研究旨在揭示权衡并设计实时决策规则,以实现住宅DR的接近最佳性能。与计算机科学或统计学中的传统学习方法不同,该奖项旨在解决人类用户和工程系统之间相互交织的交互作用的挑战。该奖项反映了NSF的法定基金会的使命是履行其使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评价,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Reliability-aware Multi-armed Bandit Approach to Learn and Select Users in Demand Response
- DOI:10.1016/j.automatica.2020.109015
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Yingying Li;Qinran Hu;N. Li
- 通讯作者:Yingying Li;Qinran Hu;N. Li
Online Learning and Distributed Control for Residential Demand Response
- DOI:10.1109/tsg.2021.3090039
- 发表时间:2020-10
- 期刊:
- 影响因子:9.6
- 作者:Xin Chen;Yingying Li;Jun Shimada;Na Li
- 通讯作者:Xin Chen;Yingying Li;Jun Shimada;Na Li
Learning and Selecting the Right Customers for Reliability: A Multi-Armed Bandit Approach
- DOI:10.1109/cdc.2018.8619481
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Yingying Li;Qinran Hu;Na Li
- 通讯作者:Yingying Li;Qinran Hu;Na Li
Online Residential Demand Response via Contextual Multi-Armed Bandits
- DOI:10.1109/lcsys.2020.3003190
- 发表时间:2021-04-01
- 期刊:
- 影响因子:3
- 作者:Chen, Xin;Nie, Yutong;Li, Na
- 通讯作者:Li, Na
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Na Li其他文献
The key sulfometuron-methyl degrading bacteria isolation based on soil bacterial phylogenetic molecular ecological networks and application for bioremediation of contaminated soil by immobilization
基于土壤细菌系统发育分子生态网络的甲磺隆关键降解菌分离及其在污染土壤生物修复中的应用
- DOI:
10.1016/j.ecoenv.2022.113605 - 发表时间:
2022 - 期刊:
- 影响因子:6.8
- 作者:
Hao Zhang;Chun-Yang Liu;Xin Zhang;Hui-Ying Yang;Jie Sun;Cheng-Bin Liu;Na Li - 通讯作者:
Na Li
How Perceived Stress Affects Farmers’ Continual Adoption of Farmland Quality Improvement Practices
感知压力如何影响农民——持续采用农田质量改善实践
- DOI:
10.3390/agriculture12060876 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Na Li;Caixia Xue - 通讯作者:
Caixia Xue
span style=font-family:Times New Roman;background:white;font-size:12pt;A Highly Selective and Instantaneous Nanoprobe for Detection and Imaging of Ascorbic Acid in Living Cells and in Vivo. 2014, 86, ./span
用于活细胞和体内抗坏血酸检测和成像的高选择性和瞬时纳米探针。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Na Li;Yanhua Li;Yaoyao Han;Wei Pan;Tingting Zhang;Bo Tang - 通讯作者:
Bo Tang
Molecular characterization of soil organic carbon in water-stable aggregate fractions during the early pedogenesis from parent material of Mollisols
软土母质早期成土过程中水稳定团聚体部分土壤有机碳的分子特征
- DOI:
10.1007/s11368-020-02563-w - 发表时间:
2020-02 - 期刊:
- 影响因子:3.6
- 作者:
Na Li;Jinghong Long;Xiaozeng Han;Yaru Yuan;Ming Sheng - 通讯作者:
Ming Sheng
Comparison of central corneal thickness treated with small incision lenticule extraction, femtosecond laser-assisted in situ keratomileusis, or laser-assisted subepithelial keratomileusis for myopia
小切口角膜基质透镜摘除术、飞秒激光辅助原位角膜磨镶术、激光辅助上皮下角膜磨镶术治疗近视的中央角膜厚度比较
- DOI:
10.1007/s10103-023-03862-7 - 发表时间:
2023 - 期刊:
- 影响因子:2.1
- 作者:
G. Tian;Tong Chen;Xin Liu;Yue Lin;Na Li;Hua Gao;Mingna Liu - 通讯作者:
Mingna Liu
Na Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Na Li', 18)}}的其他基金
Planning: Assessing Cyber Victimization Risk of Job Searching in the Hybrid World
规划:评估混合世界中求职的网络受害风险
- 批准号:
2331984 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003111 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Developing Innovative Privacy Learning Modules to Engage Students in Cybersecurity Education
开发创新的隐私学习模块,让学生参与网络安全教育
- 批准号:
1712496 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Optimization, Control, and Incentive Design for Power Networks with High Levels of Distributed Energy Resources
职业:高水平分布式能源电力网络的优化、控制和激励设计
- 批准号:
1553407 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Towards Communication-Cognizant Voltage Regulation and Energy Management for Power Distribution Systems
合作研究:面向配电系统的通信认知电压调节和能源管理
- 批准号:
1608509 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
- 批准号:
2329919 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151021 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
- 批准号:
2210198 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Compact Field Portable Biophotonics Instrument for Real-Time Automated Analysis and Identification of Blood Cells Impact Impacted by COVID-19
EAGER:紧凑型现场便携式生物光子学仪器,用于实时自动分析和识别受 COVID-19 影响的血细胞
- 批准号:
2141473 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151020 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: MEMS Enabled Real Time Detection of Pathogens Viruses and Biomarkers
EAGER:MEMS 实现病原体病毒和生物标记物的实时检测
- 批准号:
2210471 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Development of an Energy-Harvesting Real-time Under-ice Monitoring System in the Arctic Ocean
EAGER:合作研究:北冰洋能量收集实时冰下监测系统的开发
- 批准号:
2134146 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
- 批准号:
2141008 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant














{{item.name}}会员




