Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching

协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图

基本信息

  • 批准号:
    2003111
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The recent wave of technological advances in machine learning and artificial intelligence has led to widespread applications and public awareness. At the same time, the rapid growth of high-speed wireless network services presents an opportunity for future distributed learning involving a vast number of smart IoT devices. This project targets several technical challenges posed by the limited reliability of wireless connections and computational constraints of the edge nodes in distributed learning systems. Overcoming these challenges is vital to the plethora of computation, communication, and coordination tasks required by distributed machine learning at the network edge. Centered on developing innovative edge learning algorithms over wireless MAC channels under the constraints of computing, power, and bandwidth, this project can significantly impact wireless edge learning in a variety of IoT applications, ranging from transportation, safety, and agriculture, to energy efficiency, e-health, and smart infrastructure. The broader impact of this research will also come through many educational opportunities by providing opportunities in STEM to K-12, women, and underrepresented minority students. This collaborative project will develop an innovative network architecture for distributed learning over wireless multi-access channels. Specifically, the PIs will take a principled approach to develop an integrated wireless edge learning framework, using both gradient-based methods and also very recent advances in gradient-free, zero-order optimization, while taking into account the constraints in computing, power and bandwidth therein, in a holistic manner. The developed methods will be also extended to the setting of distributed online learning and reinforcement learning under wireless MAC. The PIs will focus on optimizing communication-efficient gradient sparsification based local updates that are communicated within the wireless network under bandwidth constraints; and each sender intelligently carries out transmission power allocation based on learning gradient and channel conditions. One important objective is to develop a novel learning-based framework for efficient wireless channel estimation and update to enable effective power control and learning. The project will devise edge learning algorithms that are robust against wireless channel uncertainty. The team of PIs shall comprehensively investigate the impact of the wireless bandwidth and power constraint on both the accuracy and convergence speed of edge learning algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和人工智能方面的技术进步浪潮导致了广泛的应用和公众意识。同时,高速无线网络服务的快速增长为将来的分布式学习提供了机会,涉及大量智能IoT设备。该项目针对的是,由无线连接的有限可靠性和分布式学习系统中边缘节点的计算限制的有限可靠性所带来的几个技术挑战。克服这些挑战对于网络边缘分布式机器学习所需的大量计算,通信和协调任务至关重要。该项目围绕计算,功率和带宽的限制,在无线MAC通道上开发创新的边缘学习算法,该项目可能会严重影响各种物联网应用中的无线边缘学习,从运输,安全性和农业,到能源效率,电子卫生和智能基础结构。这项研究的更广泛的影响还将通过许多教育机会,通过向K-12,妇女和代表性不足的少数族裔学生提供机会。 这个协作项目将开发一种创新的网络体系结构,用于通过无线多访问渠道分布式学习。具体来说,PI将采用一种原则性的方法来开发一个基于梯度的方法,以及在无梯度的零级优化方面的最新进展,同时考虑到计算,功率和带宽的约束,并以整体方式考虑了限制。开发的方法还将扩展到无线MAC下的分布式在线学习和增强学习的设置。 PI将着重于优化基于带宽约束的无线网络中传达的基于无线网络中的沟通梯度稀疏的本地更新;每个发件人都根据学习梯度和渠道条件智能地进行传输功率分配。一个重要的目标是开发一个基于学习的新型框架,以进行有效的无线渠道估计并进行更新,以实现有效的功率控制和学习。该项目将设计边缘学习算法,这些算法可抵抗无线通道不确定性。 PIS团队应全面研究无线带宽和功率约束对边缘学习算法的准确性和收敛速度的影响。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication-Efficient Distributed SGD With Compressed Sensing
  • DOI:
    10.1109/lcsys.2021.3137859
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yujie Tang;V. Ramanathan;Junshan Zhang;N. Li
  • 通讯作者:
    Yujie Tang;V. Ramanathan;Junshan Zhang;N. Li
Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Chen;Yujie Tang;N. Li
  • 通讯作者:
    Xin Chen;Yujie Tang;N. Li
Source Seeking by Dynamic Source Location Estimation
通过动态源位置估计来寻找源
Distributed Information-Based Source Seeking
  • DOI:
    10.1109/tro.2023.3309099
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Tianpeng Zhang;Victor Qin;Yujie Tang;Na Li
  • 通讯作者:
    Tianpeng Zhang;Victor Qin;Yujie Tang;Na Li
Federated Learning over Wireless Networks: A Band-limited Coordinated Descent Approach
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Na Li其他文献

Calibration of CFD grid for simulating the impeller clearance flow and axial hydraulic force of centrifugal pump
模拟离心泵叶轮间隙流量和轴向水力的CFD网格标定
Study of triangular flow v3 in Au+Au and Cu+Cu collisions with a multiphase transport model
使用多相输运模型研究 Au Au 和 Cu Cu 碰撞中的三角流 v3
Generation of largely elliptically polarized terahertz radiation from laser-induced plasma
从激光诱导等离子体产生大部分椭圆偏振的太赫兹辐射
  • DOI:
    10.1364/oe.25.030987
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Honggeng Wang;Na Li;Ya Bai;Peng Liu;Zhanshann Wang;Chengpu Liu
  • 通讯作者:
    Chengpu Liu
Optimal Distributed Energy Resource Coordination: A Decomposition Method Based on Distribution Locational Marginal Costs
分布式能源资源最优协调:一种基于分布区位边际成本的分解方法
Use of oral contraceptives and risk of ulcerative colitis – A systematic review and meta‐analysis
口服避孕药的使用和溃疡性结肠炎的风险——系统评价和荟萃分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Xiaoyun Wang;Xiude Fan;Huan Deng;Xiaoge Zhang;Kun Zhang;Junwang Xu;Na Li;Q. Han;Zhengwen Liu
  • 通讯作者:
    Zhengwen Liu

Na Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Na Li', 18)}}的其他基金

Planning: Assessing Cyber Victimization Risk of Job Searching in the Hybrid World
规划:评估混合世界中求职的网络受害风险
  • 批准号:
    2331984
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Learning, Selection, and Control in Residential Demand Response for Grid Reliability
EAGER:实时:住宅需求响应中的学习、选择和控制以提高电网可靠性
  • 批准号:
    1839632
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Developing Innovative Privacy Learning Modules to Engage Students in Cybersecurity Education
开发创新的隐私学习模块,让学生参与网络安全教育
  • 批准号:
    1712496
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Optimization, Control, and Incentive Design for Power Networks with High Levels of Distributed Energy Resources
职业:高水平分布式能源电力网络的优化、控制和激励设计
  • 批准号:
    1553407
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards Communication-Cognizant Voltage Regulation and Energy Management for Power Distribution Systems
合作研究:面向配电系统的通信认知电压调节和能源管理
  • 批准号:
    1608509
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: MLWiNS:Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
  • 批准号:
    2240916
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002821
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002874
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了