Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching

协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图

基本信息

  • 批准号:
    2003111
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The recent wave of technological advances in machine learning and artificial intelligence has led to widespread applications and public awareness. At the same time, the rapid growth of high-speed wireless network services presents an opportunity for future distributed learning involving a vast number of smart IoT devices. This project targets several technical challenges posed by the limited reliability of wireless connections and computational constraints of the edge nodes in distributed learning systems. Overcoming these challenges is vital to the plethora of computation, communication, and coordination tasks required by distributed machine learning at the network edge. Centered on developing innovative edge learning algorithms over wireless MAC channels under the constraints of computing, power, and bandwidth, this project can significantly impact wireless edge learning in a variety of IoT applications, ranging from transportation, safety, and agriculture, to energy efficiency, e-health, and smart infrastructure. The broader impact of this research will also come through many educational opportunities by providing opportunities in STEM to K-12, women, and underrepresented minority students. This collaborative project will develop an innovative network architecture for distributed learning over wireless multi-access channels. Specifically, the PIs will take a principled approach to develop an integrated wireless edge learning framework, using both gradient-based methods and also very recent advances in gradient-free, zero-order optimization, while taking into account the constraints in computing, power and bandwidth therein, in a holistic manner. The developed methods will be also extended to the setting of distributed online learning and reinforcement learning under wireless MAC. The PIs will focus on optimizing communication-efficient gradient sparsification based local updates that are communicated within the wireless network under bandwidth constraints; and each sender intelligently carries out transmission power allocation based on learning gradient and channel conditions. One important objective is to develop a novel learning-based framework for efficient wireless channel estimation and update to enable effective power control and learning. The project will devise edge learning algorithms that are robust against wireless channel uncertainty. The team of PIs shall comprehensively investigate the impact of the wireless bandwidth and power constraint on both the accuracy and convergence speed of edge learning algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近机器学习和人工智能的技术进步浪潮带来了广泛的应用和公众意识。与此同时,高速无线网络服务的快速增长为涉及大量智能物联网设备的未来分布式学习提供了机会。该项目针对分布式学习系统中无线连接的有限可靠性和边缘节点的计算约束所带来的几个技术挑战。克服这些挑战对于网络边缘的分布式机器学习所需的大量计算、通信和协调任务至关重要。该项目致力于在计算、功耗和带宽的限制下通过无线MAC信道开发创新的边缘学习算法,可以显著影响各种物联网应用中的无线边缘学习,从交通、安全和农业到能源效率、电子健康和智能基础设施。这项研究的更广泛影响也将通过为K-12,妇女和代表性不足的少数民族学生提供STEM机会来获得许多教育机会。 该合作项目将开发一种创新的网络架构,用于通过无线多接入通道进行分布式学习。具体而言,PI将采取原则性的方法来开发集成的无线边缘学习框架,使用基于梯度的方法以及无梯度、零阶优化的最新进展,同时以整体方式考虑其中的计算、功率和带宽限制。所开发的方法也将扩展到无线MAC下的分布式在线学习和强化学习的设置。PI将专注于优化在带宽约束下在无线网络内传送的基于通信高效梯度稀疏化的本地更新;并且每个发送器基于学习梯度和信道条件智能地执行传输功率分配。一个重要的目标是开发一种新的基于学习的框架,用于有效的无线信道估计和更新,以实现有效的功率控制和学习。该项目将设计边缘学习算法,对无线信道的不确定性具有鲁棒性。PI团队将全面调查无线带宽和功率限制对边缘学习算法的准确性和收敛速度的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication-Efficient Distributed SGD With Compressed Sensing
  • DOI:
    10.1109/lcsys.2021.3137859
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yujie Tang;V. Ramanathan;Junshan Zhang;N. Li
  • 通讯作者:
    Yujie Tang;V. Ramanathan;Junshan Zhang;N. Li
Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Chen;Yujie Tang;N. Li
  • 通讯作者:
    Xin Chen;Yujie Tang;N. Li
Source Seeking by Dynamic Source Location Estimation
通过动态源位置估计来寻找源
Federated Learning over Wireless Networks: A Band-limited Coordinated Descent Approach
Distributed Information-Based Source Seeking
  • DOI:
    10.1109/tro.2023.3309099
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Tianpeng Zhang;Victor Qin;Yujie Tang;Na Li
  • 通讯作者:
    Tianpeng Zhang;Victor Qin;Yujie Tang;Na Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Na Li其他文献

The key sulfometuron-methyl degrading bacteria isolation based on soil bacterial phylogenetic molecular ecological networks and application for bioremediation of contaminated soil by immobilization
基于土壤细菌系统发育分子生态网络的甲磺隆关键降解菌分离及其在污染土壤生物修复中的应用
  • DOI:
    10.1016/j.ecoenv.2022.113605
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Hao Zhang;Chun-Yang Liu;Xin Zhang;Hui-Ying Yang;Jie Sun;Cheng-Bin Liu;Na Li
  • 通讯作者:
    Na Li
How Perceived Stress Affects Farmers’ Continual Adoption of Farmland Quality Improvement Practices
感知压力如何影响农民——持续采用农田质量改善实践
  • DOI:
    10.3390/agriculture12060876
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Na Li;Caixia Xue
  • 通讯作者:
    Caixia Xue
span style=font-family:Times New Roman;background:white;font-size:12pt;A Highly Selective and Instantaneous Nanoprobe for Detection and Imaging of Ascorbic Acid in Living Cells and in Vivo. 2014, 86, ./span
用于活细胞和体内抗坏血酸检测和成像的高选择性和瞬时纳米探针。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Na Li;Yanhua Li;Yaoyao Han;Wei Pan;Tingting Zhang;Bo Tang
  • 通讯作者:
    Bo Tang
Molecular characterization of soil organic carbon in water-stable aggregate fractions during the early pedogenesis from parent material of Mollisols
软土母质早期成土过程中水稳定团聚体部分土壤有机碳的分子特征
  • DOI:
    10.1007/s11368-020-02563-w
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Na Li;Jinghong Long;Xiaozeng Han;Yaru Yuan;Ming Sheng
  • 通讯作者:
    Ming Sheng
Comparison of central corneal thickness treated with small incision lenticule extraction, femtosecond laser-assisted in situ keratomileusis, or laser-assisted subepithelial keratomileusis for myopia
小切口角膜基质透镜摘除术、飞秒激光辅助原位角膜磨镶术、激光辅助上皮下角膜磨镶术治疗近视的中央角膜厚度比较
  • DOI:
    10.1007/s10103-023-03862-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    G. Tian;Tong Chen;Xin Liu;Yue Lin;Na Li;Hua Gao;Mingna Liu
  • 通讯作者:
    Mingna Liu

Na Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Na Li', 18)}}的其他基金

Planning: Assessing Cyber Victimization Risk of Job Searching in the Hybrid World
规划:评估混合世界中求职的网络受害风险
  • 批准号:
    2331984
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Learning, Selection, and Control in Residential Demand Response for Grid Reliability
EAGER:实时:住宅需求响应中的学习、选择和控制以提高电网可靠性
  • 批准号:
    1839632
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Developing Innovative Privacy Learning Modules to Engage Students in Cybersecurity Education
开发创新的隐私学习模块,让学生参与网络安全教育
  • 批准号:
    1712496
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Optimization, Control, and Incentive Design for Power Networks with High Levels of Distributed Energy Resources
职业:高水平分布式能源电力网络的优化、控制和激励设计
  • 批准号:
    1553407
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards Communication-Cognizant Voltage Regulation and Energy Management for Power Distribution Systems
合作研究:面向配电系统的通信认知电压调节和能源管理
  • 批准号:
    1608509
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002821
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002874
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2002902
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
  • 批准号:
    2003098
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2003131
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
  • 批准号:
    2003279
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
  • 批准号:
    2003082
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
  • 批准号:
    2002664
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了