Collaborative Research: FW-HTF: Integrating Cognitive Science and Intelligent Systems to Enhance Geoscience Practice

合作研究:FW-HTF:整合认知科学和智能系统以增强地球科学实践

基本信息

  • 批准号:
    1839705
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The Future of Work at the Human-Technology Frontier (FW-HTF) is one of 10 new Big Ideas for Future Investment announced by NSF. The FW-HTF cross-directorate program aims to respond to the challenges and opportunities of the changing landscape of jobs and work by supporting convergent research. This award fulfills part of that aim. This project will make a significant contribution toward the support of future workers in geology. Understanding how geologists reason, plan to collect new data, consider three-dimensional spatial relations, and evaluate uncertainty are critically important for supporting scientists working on applied problems, such as natural resource exploration. This project will enhance existing efforts in geology to collect data using robot drones. Drones allow access to important areas of the world too dangerous to access in person and not visible from satellite or plane. The project will use machine learning to incorporate expert knowledge into drone flights to support effective autonomous data collection. The data will yield improved geological understanding of an important fault system. Findings from the project will improve understanding of uncertainty in volumes and thus improve our understanding of earthquakes and the analyses of petroleum workers. Understanding how expert geologists reason will support new exploration and mapping strategies for human-robot teams working in natural environments. The collaborative efforts of the interdisciplinary team will advance the fields of cognitive science, geology, and machine learning. The integration of cognitive science, robotics, and geology will develop new approaches to field work with human-autonomous systems teams that are faster and more effective than any either human or autonomous system would be acting alone. The project will characterize expert spatial reasoning about 3D relations and uncertainty as geologists collect data to develop a 3D understanding of a new field area, make predictions about future observations, and construct geological models. Errors in reasoning about 3D structures will be used to develop quantitative models of expert uncertainty. These models will be used to help explicitly visualize uncertainty for the experts and to construct cost functions for the robot navigation. The cost functions will include metrics that capture scientific value. The project will develop new approaches to drone exploration and mapping, including machine learning of features of interest to geologists. Drones will autonomously explore and map natural rock formations in canyon environments to support and speed up the data collection and interpretation efforts of field geologists. The project will study the structural geology of the Mecca Hills area of California, a well exposed portion of the San Andreas fault system. Robot drones will collect data about surface features to develop maps of subsurface structures. The cognitive science-infused robot design will employ successful expert strategies and focus on areas where experts are likely to make errors to prioritize exploration of those areas in navigation plans. The proposed strategies will enable 3D surface reconstruction of canyon surfaces. They will also enable better understanding of how to enhance planning and on-the-fly decision making of experts for collecting scientifically important data. The project's foundational work aims to develop an interdisciplinary understanding of how geologists build a scientific understanding of a region over time. It also aims to design autonomous exploration strategies for human-robot teams, and test new ways to support the sequential decisions about where to collect data to maximize scientific impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类技术前沿工作的未来(FW-HTF)是美国国家科学基金会(NSF)宣布的未来投资十大新构想之一。FW-HTF跨部门计划旨在通过支持融合研究来应对不断变化的就业和工作环境的挑战和机遇。这个奖项部分实现了这一目标。该项目将为支持未来的地质工作者做出重大贡献。了解地质学家如何推理、计划收集新数据、考虑三维空间关系和评估不确定性,对于支持科学家研究应用问题(如自然资源勘探)至关重要。该项目将加强现有的地质学工作,利用机器人无人机收集数据。无人机可以进入世界上一些重要的地区,这些地区太危险,无法亲自进入,也无法从卫星或飞机上看到。该项目将利用机器学习将专家知识整合到无人机飞行中,以支持有效的自主数据收集。这些数据将提高对一个重要断层系统的地质认识。该项目的发现将提高对体积不确定性的理解,从而提高我们对地震和石油工人分析的理解。了解专家地质学家如何推理,将为在自然环境中工作的人机团队提供新的勘探和绘图策略。跨学科团队的合作努力将推动认知科学、地质学和机器学习领域的发展。认知科学、机器人技术和地质学的整合将开发出与人类自主系统团队一起进行实地工作的新方法,这种方法比任何人类或自主系统单独行动都要更快、更有效。该项目将在地质学家收集数据以开发对新油田区域的3D理解、对未来观测进行预测和构建地质模型时,对3D关系和不确定性进行专家空间推理。关于三维结构的推理错误将用于开发专家不确定性的定量模型。这些模型将用于帮助专家明确地可视化不确定性,并为机器人导航构建成本函数。成本函数将包括捕捉科学价值的指标。该项目将开发无人机勘探和测绘的新方法,包括地质学家感兴趣的特征的机器学习。无人机将在峡谷环境中自主探索和绘制天然岩层,以支持和加快野外地质学家的数据收集和解释工作。该项目将研究加州麦加山地区的构造地质,这是圣安德烈亚斯断层系统的一个很好的暴露部分。无人驾驶机器人将收集有关地表特征的数据,以绘制地下结构地图。充满认知科学的机器人设计将采用成功的专家策略,并专注于专家可能犯错误的领域,以便在导航计划中优先考虑这些领域的探索。所提出的策略将使峡谷表面的三维表面重建成为可能。它们还将使人们更好地了解如何加强规划和专家的即时决策,以便收集科学上重要的数据。该项目的基础工作旨在发展一种跨学科的理解,即地质学家如何随着时间的推移建立对一个地区的科学理解。它还旨在为人机团队设计自主探索策略,并测试新的方法来支持在哪里收集数据的顺序决策,以最大限度地发挥科学影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When seeing what's wrong makes you right: The effect of erroneous examples on 3D diagram learning
看到错误就知道正确:错误示例对 3D 图学习的影响
  • DOI:
    10.1002/acp.3671
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jaeger, Allison J.;Marzano, Joanna A.;Shipley, Thomas F.
  • 通讯作者:
    Shipley, Thomas F.
Strategies for effective unmanned aerial vehicle use in geological field studies based on cognitive science principles
基于认知科学原理的地质野外研究中有效使用无人机的策略
  • DOI:
    10.1130/ges02440.1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bateman, Kathryn M.;Williams, Randolph T.;Shipley, Thomas F.;Tikoff, Basil;Pavlis, Terry;Wilson, Cristina G.;Cooke, Michele L.;Fagereng, Ake
  • 通讯作者:
    Fagereng, Ake
Improving the Practice of Geology through Explicit Inclusion of Scientific Uncertainty for Data and Models
通过明确纳入数据和模型的科学不确定性来改进地质学实践
  • DOI:
    10.1130/gsatg560a.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tikoff, Basil;Shipley, T.F.;Nelson, E.M.;Williams, R.T.;Barshi, N.;Wilson, C.
  • 通讯作者:
    Wilson, C.
Collaboration, cyberinfrastructure, and cognitive science: The role of databases and dataguides in 21st century structural geology
协作、网络基础设施和认知科学:数据库和数据指南在 21 世纪构造地质学中的作用
  • DOI:
    10.1016/j.jsg.2018.05.007
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shipley, Thomas F.;Tikoff, Basil
  • 通讯作者:
    Tikoff, Basil
Learning from the COVID-19 Pandemic: How Faculty Experiences Can Prepare Us for Future System-Wide Disruption
从 COVID-19 大流行中吸取教训:教师经验如何帮助我们为未来的系统范围内的破坏做好准备
  • DOI:
    10.1130/gsatg520gw.1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bateman, Kathryn;Altermatt, Ellen;Egger, Anne;Iverson, Ellen;Manduca, Cathryn;Riggs, Eric;St. John, Kristen;Shipley, Thomas
  • 通讯作者:
    Shipley, Thomas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Shipley其他文献

Evaluation of Observationally Based Models Through Salience and Salience Maps
通过显着性和显着性图评估基于观测的模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Nelson;Basil Tikoff;Thomas Shipley;Alexander D. Lusk;Cristina Wilson
  • 通讯作者:
    Cristina Wilson

Thomas Shipley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Shipley', 18)}}的其他基金

Collaborative Research: Frameworks: Automated Quality Assurance and Quality Control for the StraboSpot Geologic Information System and Observational Data
合作研究:框架:StraboSpot 地质信息系统和观测数据的自动化质量保证和质量控制
  • 批准号:
    2311820
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Supporting Feedback Loop Learning in Natural and Social Science Courses
支持自然科学和社会科学课程中的反馈循环学习
  • 批准号:
    2142010
  • 财政年份:
    2022
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Educating Skillful Visualizers
培养熟练的可视化者
  • 批准号:
    1743234
  • 财政年份:
    2017
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Shaping the Future of Science through the Science of Learning
合作研究:通过学习科学塑造科学的未来
  • 批准号:
    1745744
  • 财政年份:
    2017
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Co-Robotic Systems for GeoSciences Field Research
NRI:INT:COLLAB:用于地球科学领域研究的协作机器人系统
  • 批准号:
    1734365
  • 财政年份:
    2017
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
SL-CN: Understanding and Promoting Spatial Learning Processes in the Geosciences
SL-CN:理解和促进地球科学中的空间学习过程
  • 批准号:
    1640800
  • 财政年份:
    2016
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FIRE: Making Meaning from Geoscience Data: A Challenge at the Intersection of Geosciences and Cognitive Sciences
合作研究:FIRE:从地球科学数据中获取意义:地球科学和认知科学交叉点的挑战
  • 批准号:
    1138619
  • 财政年份:
    2011
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
An International Workshop on Spatial Cognition and Learning
空间认知与学习国际研讨会
  • 批准号:
    0823557
  • 财政年份:
    2008
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Seismic Reflection Data System for Marine Geosciences II
合作研究:海洋地球科学地震反射数据系统II
  • 批准号:
    0826282
  • 财政年份:
    2008
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Enhanced Seismic Data Access System for the University of Texas Institute for Geophysics
德克萨斯大学地球物理研究所增强型地震数据访问系统
  • 批准号:
    0326679
  • 财政年份:
    2003
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326408
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
  • 批准号:
    2401745
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326146
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326169
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326186
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了