EAGER: Engineering Metal-MAX Multilayered Nanocomposites: Hierarchical Microstructures for Tunable Strength and Toughness

EAGER:工程 Metal-MAX 多层纳米复合材料:可调节强度和韧性的分层微观结构

基本信息

项目摘要

For a number of applications in manufacturing, energy and infrastructure, materials with high strength and high ductility are needed. Finding both of these properties in the same material, however, is extremely rare. A number of materials engineering approaches seek to create high strength, high ductility materials, including fabricating nanostructured layered structures with alternating materials. This EArly-concept Grants for Exploratory Research (EAGER) award supports an exploratory experimental and computational effort to engineer multi-layered metal-ceramic nanocomposite materials that exhibit tunable strength and toughness. The nanocomposite will be composed of alternating nanoscale metallic and ceramic layers. The ceramic layers are part of the family of ceramic materials known as MAX phase, which themselves are layered carbide or nitride materials. Combining metal layers with MAX layers results in a unique structure with as a complex network of interfaces which will eventually control the behavior of the material. These materials have applications in multiple technological fields, including high temperature structural applications, protective coatings, sensors, tunable damping films for microelectromechanical systems (MEMS), and potential applications in cladding materials for nuclear use. The ability to have a strong yet ductile metal-MAX composite with improved mechanical behavior to satisfy the demands of such applications will provide considerable technological and economic benefits. The research will provide graduate training for a PhD student who will also benefit from the collaboration with Los Alamos National Laboratory.The objectives of this combined modeling and experimental EAGER research are to: a) design and synthesize multi-layered nanocomposites composed of alternating metallic and MAX phase layers with a lamellar thickness reduced to the nanoscale, b) establish a fundamental understanding of the hierarchical interface driven microstructure and microstructure-property relationships using nano-mechanical testing tools (nanoindentation, micro-compression), and c) formulate and validate atomistic models that outline the premise for controlling the activation of specific deformation mode(s) through hierarchical design of metal-MAX nanolaminates, thus tuning their mechanical properties to achieve greater strength and toughness. Upon successful completion of this research, tunable properties will be realized through guided variations in processing parameters from computation, as our nanoscale modeling will unravel the role of interfaces and the hierarchical microstructure of the metal-MAX system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于制造、能源和基础设施中的许多应用,需要具有高强度和高延展性的材料。然而,在同一种材料中发现这两种性质是非常罕见的。许多材料工程方法寻求制造高强度、高韧性材料,包括用交替材料制造纳米结构分层结构。EARLY概念探索性研究赠款(EAGER)奖支持探索性实验和计算工作,以设计具有可调强度和韧性的多层金属陶瓷纳米复合材料。纳米复合材料将由交替的纳米级金属和陶瓷层组成。陶瓷层是被称为MAX相的陶瓷材料家族的一部分,其本身是层状碳化物或氮化物材料。将金属层与MAX层相结合,形成了一种独特的结构,作为一个复杂的界面网络,最终将控制材料的行为。这些材料在多个技术领域中具有应用,包括高温结构应用、保护涂层、传感器、用于微机电系统(MEMS)的可调阻尼膜,以及在核用途的包覆材料中的潜在应用。具有强而韧性的金属-MAX复合材料的能力,具有改善的机械性能,以满足这些应用的需求,将提供可观的技术和经济效益。该研究将为一名博士生提供研究生培训,他也将从与洛斯阿拉莫斯国家实验室的合作中受益。这项结合建模和实验的EAGER研究的目标是:a)设计和合成由交替的金属和MAX相层组成的多层纳米复合材料,其具有减小到纳米级的片层厚度,B)使用纳米机械测试工具建立对分层界面驱动的微观结构和微观结构-性能关系的基本理解(纳米压痕,微压缩),以及c)制定和验证原子模型,该原子模型概述了通过金属的分级设计来控制特定变形模式的激活的前提,MAX纳米层压材料,从而调整其机械性能,以实现更高的强度和韧性。在这项研究成功完成后,可调性能将通过计算过程参数的指导变化来实现,因为我们的纳米级建模将揭示界面的作用和金属-MAX系统的分层微观结构。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoindentation deformation and cracking in sapphire
  • DOI:
    10.1016/j.ceramint.2019.02.022
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    V. Trabadelo;Siddhartha Pathak;F. Saeidi;M. Parlińska-Wojtan;K. Wasmer
  • 通讯作者:
    V. Trabadelo;Siddhartha Pathak;F. Saeidi;M. Parlińska-Wojtan;K. Wasmer
Elevated and cryogenic temperature micropillar compression of magnesium–niobium multilayer films
镁铌多层薄膜的高温和低温微柱压缩
  • DOI:
    10.1007/s10853-019-03422-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Thomas, K;Mohanty, G;Wehrs, J;Taylor, AA;Pathak, S;Casari, D;Schwiedrzik, J;Mara, N;Spolenak, R;Michler, J
  • 通讯作者:
    Michler, J
High temperature nanoindentation of Cu–TiN nanolaminates
Cu−TiN 纳米层压材料的高温纳米压痕
  • DOI:
    10.1016/j.msea.2020.140522
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wheeler, Jeffrey M.;Harvey, Cayla;Li, Nan;Misra, Amit;Mara, Nathan A.;Maeder, Xavier;Michler, Johann;Pathak, Siddhartha
  • 通讯作者:
    Pathak, Siddhartha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Pathak其他文献

Development and validation of a novel data analysis procedure for spherical nanoindentation
球形纳米压痕新型数据分析程序的开发和验证
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone
小鼠骨机械行为与成分之间的层状水平相关性
  • DOI:
    10.1007/s11837-021-04808-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Shraddha J. Vachhani;S. Kalidindi;Thomas Burr;Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Caught in the act: Grain-switching and quadrijunction formation in annealed aluminum
陷入困境:退火铝中的晶粒转换和四结形成
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak;R. Doherty;A. Rollett;J. Michler;K. Wasmer
  • 通讯作者:
    K. Wasmer
Time and frequency dependent mechanical properties of LaCoO3-based perovskites: Internal friction and negative creep
LaCoO3 基钙钛矿的时间和频率依赖性机械性能:内摩擦和负蠕变
  • DOI:
    10.1063/1.5037049
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Lugovy;N. Orlovskaya;Siddhartha Pathak;M. Radovic;E. Lara‐Curzio;D. Verbylo;J. Kuebler;T. Graule;M. Reece
  • 通讯作者:
    M. Reece
Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
表面处理对金属纳米压痕应力-应变曲线测量的重要性
  • DOI:
    10.1557/jmr.2009.0137
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Siddhartha Pathak;D. Stojakovic;R. Doherty;S. Kalidindi
  • 通讯作者:
    S. Kalidindi

Siddhartha Pathak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Pathak', 18)}}的其他基金

CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
  • 批准号:
    2118673
  • 财政年份:
    2022
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Continuing Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    2051443
  • 财政年份:
    2020
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    1929208
  • 财政年份:
    2020
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
  • 批准号:
    1937149
  • 财政年份:
    2019
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Engineering biology for critical metal recovery from industrial wastestreams
从工业废物流中回收关键金属的工程生物学
  • 批准号:
    BB/Y008448/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Research Grant
Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)
基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)
  • 批准号:
    EP/Y002318/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Research Grant
SBIR Phase I: Engineering Scalability of Durable Low-Noble-Metal-Content Fuel Cell Catalysts
SBIR 第一阶段:耐用低贵金属含量燃料电池催化剂的工程可扩展性
  • 批准号:
    2151576
  • 财政年份:
    2023
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
Interfacial engineering of multilayered metal organic framework membranes
多层金属有机骨架膜的界面工程
  • 批准号:
    DP230103192
  • 财政年份:
    2023
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Discovery Projects
In-situ grain boundary engineering via metal additive manufacturing
通过金属增材制造进行原位晶界工程
  • 批准号:
    DP230101063
  • 财政年份:
    2023
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Discovery Projects
21EBTA: Engineering Microbial Metal Recovery (EMMR)
21EBTA:工程微生物金属回收(EMMR)
  • 批准号:
    BB/W014165/1
  • 财政年份:
    2022
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Research Grant
Engineering Microbial Metal Recovery (EMMR)
工程微生物金属回收 (EMMR)
  • 批准号:
    BB/W01467X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Research Grant
Interface engineering and mechanism understanding for Na metal anode
Na金属阳极的界面工程和机理理解
  • 批准号:
    572231-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Alliance Grants
EPM: Engineering Transparent Conducting Superlattices from Liquid Metal Printed 2D Oxides
EPM:利用液态金属打印的二维氧化物设计透明导电超晶格
  • 批准号:
    2202501
  • 财政年份:
    2022
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Atomically Dispersed Metal-Site Air Cathodes via Electrospinning at Multi-Scales for Low-Temperature Fuel Cells
合作研究:通过多尺度静电纺丝设计原子分散金属位点空气阴极用于低温燃料电池
  • 批准号:
    2223447
  • 财政年份:
    2022
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了