RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites

RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计

基本信息

项目摘要

Nanocomposites are a class of composite materials where the size of the base or constituent materials are on the nanometer length scale - one nanometer being one-billionth of a meter. They can offer unprecedented properties beyond those currently studied and used. The goal of this fellowship proposal is to augment the advantages of a multilayered design in a metal-ceramic nanocomposite that is hypothesized to exhibit tunable strength and toughness, by the selective activation of deformation mechanisms at the nanoscale. The metal-ceramic multilayered nanocomposite is composed of alternating metallic and MAX phase layers with a lamellar thickness reduced to the nanoscale. Because of the ideal, highly oriented structure that prevails across the film, each film contains thousands of "like layers", and a high density of interfaces. MAX phases are a family of ceramic materials consisting of laminated ternary carbide or nitride materials, and they represent a novel class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. These metal-MAX multilayered nanocomposite thin films show uniform interface spacing (~2 to 100’s of nm apart) and uniform interface plane and crystallography throughout the film. MAX phases have applications in multiple technological fields, including high temperature structural applications, protective coatings, sensors, tunable damping films for microelectromechanical systems, etc., along with potential applications in cladding materials for nuclear use. The ability to have a strong yet ductile metal-MAX composite with improved mechanical behavior to satisfy the demands of such applications will provide considerable technological and economic benefits. This research is an integrated collaboration planned between the principal investigator (PI) and the Center for Integrated Nanotechnologies, Sandia National Laboratories (CINT-SNL), which will support a postdoctoral researcher, and enable extended collaborative visits and infrastructure development opportunities at the nation’s premier national laboratory at CINT-SNL. Undergraduate education in the capstone senior design projects in the Materials department at the PI’s university will particularly benefit from this collaboration by having mentors (and possible visitations to CINT-SNL) from both national laboratory and university. The objectives of this fellowship project are to leverage a fundamental understanding of the activation and confinement of deformation mechanisms directly linked to the hierarchical structure at the nanoscale in multilayered nanocomposite materials, to potentially enable tunable strength and toughness. Unlike other various multilayered systems that have been pursued in the past, the metal-MAX nanocomposites studied here are composed of a unique hierarchical topology - as interfaces between the layers are in direct competition with the internal interfaces within the MAX layers to drive the tunable macroscopic mechanical behavior. Guided by experimental synthesis and novel nanomechanical testing capabilities of the PI, computational modeling at CINT-SNL will complement the experimental component to study the fundamental mechanisms (e.g., dislocations and ripplocations) within the metal-MAX hierarchical structure. Outcomes from the fellowship project will include the development of correlations between the metal-MAX hierarchical structure, its fundamental deformation mechanisms and the resulting mechanical properties, namely strength and toughness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米复合材料是一类复合材料,其中基质或组成材料的尺寸在纳米尺度上-一纳米相当于十亿分之一米。它们可以提供比目前研究和使用的东西更多的前所未有的特性。这项研究计划的目标是通过有选择地激活纳米尺度的变形机制,来增强金属-陶瓷纳米复合材料中多层设计的优势,这种纳米复合材料被假设为表现出可调的强度和韧性。金属-陶瓷多层纳米复合材料由金属相层和MAX相层交替组成,片层厚度减小到纳米级。由于整个薄膜普遍存在理想的、高度定向的结构,每一层薄膜都包含数千个“类似层”,以及高密度的界面。MAX相是由层状三元碳化物或氮化物材料组成的陶瓷材料家族,它们代表了一类新的层状固体,其中Mn+1Xn层与纯A族元素层交织在一起。这些金属-MAX多层纳米复合薄膜具有均匀的界面间距(约2~100‘S纳米)和均匀的界面平面和整个薄膜的晶体结构。MAX相在多个技术领域都有应用,包括高温结构应用、防护涂层、传感器、用于微电子机械系统的可调谐阻尼膜等,以及在核用覆层材料方面的潜在应用。具有高强度、高韧性、力学性能得到改善的金属-MAX复合材料以满足此类应用的需求,将提供可观的技术和经济效益。这项研究是首席研究员(PI)和桑迪亚国家实验室(CINT-SNL)集成纳米技术中心(CINT-SNL)之间计划的综合合作,将支持一名博士后研究人员,并在CINT-SNL提供更多的合作访问和基础设施开发机会。PI大学材料系顶石高级设计项目的本科教育将特别受益于这种合作,因为有来自国家实验室和大学的导师(以及可能访问CINT-SNL)。该奖学金项目的目标是利用对多层纳米复合材料中直接与纳米级层次结构相关联的变形机制的激活和限制的基本了解,以潜在地实现可调的强度和韧性。与过去追求的其他各种多层系统不同,这里研究的金属-MAX纳米复合材料由独特的分层拓扑组成-因为层之间的界面与MAX层内的内部界面直接竞争,以驱动可调的宏观机械行为。在PI的实验合成和新颖的纳米机械测试能力的指导下,CINT-SNL的计算建模将补充实验组件,以研究Metals-Max分层结构中的基本机制(例如,位错和波纹)。该奖学金项目的成果将包括建立Metals-Max等级结构、其基本变形机制和由此产生的机械性能(即强度和韧性)之间的相关性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Pathak其他文献

Development and validation of a novel data analysis procedure for spherical nanoindentation
球形纳米压痕新型数据分析程序的开发和验证
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone
小鼠骨机械行为与成分之间的层状水平相关性
  • DOI:
    10.1007/s11837-021-04808-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Shraddha J. Vachhani;S. Kalidindi;Thomas Burr;Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Time and frequency dependent mechanical properties of LaCoO3-based perovskites: Internal friction and negative creep
LaCoO3 基钙钛矿的时间和频率依赖性机械性能:内摩擦和负蠕变
  • DOI:
    10.1063/1.5037049
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Lugovy;N. Orlovskaya;Siddhartha Pathak;M. Radovic;E. Lara‐Curzio;D. Verbylo;J. Kuebler;T. Graule;M. Reece
  • 通讯作者:
    M. Reece
Caught in the act: Grain-switching and quadrijunction formation in annealed aluminum
陷入困境:退火铝中的晶粒转换和四结形成
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak;R. Doherty;A. Rollett;J. Michler;K. Wasmer
  • 通讯作者:
    K. Wasmer
Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
表面处理对金属纳米压痕应力-应变曲线测量的重要性
  • DOI:
    10.1557/jmr.2009.0137
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Siddhartha Pathak;D. Stojakovic;R. Doherty;S. Kalidindi
  • 通讯作者:
    S. Kalidindi

Siddhartha Pathak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Pathak', 18)}}的其他基金

CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
  • 批准号:
    2118673
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    2051443
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
  • 批准号:
    1937149
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Engineering Metal-MAX Multilayered Nanocomposites: Hierarchical Microstructures for Tunable Strength and Toughness
EAGER:工程 Metal-MAX 多层纳米复合材料:可调节强度和韧性的分层微观结构
  • 批准号:
    1841331
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了