DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials

DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力

基本信息

  • 批准号:
    2118673
  • 负责人:
  • 金额:
    $ 48.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Even though polycrystalline metallic materials are ubiquitous in daily life, when and where metallic structural components damage and fail is difficult to predict, which generally leads to overdesign. One form of damage – ductile damage – takes place in materials which are easily plastically deformed by formation of voids and localized shear bands. The initiation of these voids is strongly influenced by the internal constitution of the aggregate composite made up of single crystals comprising the polycrystalline metal. High-purity metals often form voids at the boundaries between single crystals, but it is not known why. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports the fundamental study of voids-based ductile damage in high-purity metals to enable the manufacture of materials for specific applications with significantly reduced propensity for void formation. In addition, this project will facilitate collaboration with the Air Force Research Laboratory to pursue design of new materials and manufacturing techniques for strategic purposes. This highly collaborative project will also allow students the opportunity to engage on three campuses, the Air Force Research Laboratory, and a couple of Department of Energy Laboratories to assist in educating the next generation of scientists and engineers in strategically important disciplines. Designing material interfaces to resist formation of voids during tensile deformation will be a significant contribution to the Materials Genome Initiative. This award addresses control of feature and defect character as well as the internal stress state for the design and manufacture of polycrystalline metals against failure. Ductile damage generally includes the processes of void nucleation, growth, and coalescence in addition to localized shear banding. This project is for a new three-dimensional sample design for both rod and plate forms of material, which will be a surrogate for a general structural component for large deformation. High-purity refractory body-centered cubic tantalum is selected as the model material due to its potential for extreme environment use. This material is known to form voids predominantly at grain boundaries and will be the focal point of material design through advanced manufacturing processes. The material design process will include the highly interactive elements of nano, micro and macro-scale experiments at varying strain rates and temperatures, molecular dynamics simulations, thermodynamically consistent plasticity and theory development, micro-scale polycrystal simulations, and macro-scale damage simulations for component design. The highlight of the approach is the uncertainty quantification via machine learning for self-consistent consolidation of large experimental and simulation datasets to guide material design and manufacturing process. The goal of this project is to design a manufacturing process to produce material which reduces damage by 30% over that in the as-received and annealed state.This project is jointly funded by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the Directorate for Engineering (ENG), the Divisions of Materials Research (DMR) and Mathematical Sciences (DMS) in the Directorate for Mathematical and Physical Sciences (MPS), and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管多晶金属材料在日常生活中随处可见,但金属结构构件在何时何地发生损伤和失效是很难预测的,这通常会导致过度设计。一种形式的损伤-延性损伤-发生在材料中,这些材料很容易通过形成空洞和局部剪切带而塑性变形。这些空洞的形成强烈地受到由含有多晶金属的单晶组成的聚集体复合材料的内部组成的影响。高纯度金属经常在单晶之间的边界形成空洞,但原因尚不清楚。这项旨在革新和设计我们的未来的设计材料奖(DMREF)支持对高纯金属中基于孔洞的延性损伤的基础研究,以使制造用于特定应用的材料能够显著减少空洞形成的倾向。此外,该项目将促进与空军研究实验室的合作,为战略目的进行新材料和制造技术的设计。这个高度协作的项目还将允许学生有机会参与三个校区、空军研究实验室和能源部的几个实验室,以帮助培养具有战略重要性的学科的下一代科学家和工程师。设计材料界面以防止在拉伸变形过程中形成空洞将是对材料基因组倡议的重大贡献。该奖项涉及针对多晶金属的设计和制造的特征和缺陷特征以及内部应力状态的控制。韧性损伤除局部剪切带外,一般还包括空洞形核、长大和合并的过程。该项目是一个新的三维样本设计的杆和板的形式的材料,这将是一个大变形的一般结构部件的替代品。高纯耐火体心立方钽因其在极端环境中的潜在用途而被选为模型材料。众所周知,这种材料主要在晶界形成空洞,并将成为通过先进制造工艺进行材料设计的焦点。材料设计过程将包括在不同应变率和温度下的纳米、微观和宏观尺度实验的高度交互的元素,分子动力学模拟,热力学一致塑性和理论发展,微观多晶模拟,以及用于部件设计的宏观损伤模拟。该方法的亮点是通过机器学习对大量实验和模拟数据集的自洽合并进行不确定性量化,以指导材料设计和制造过程。这个项目的目标是设计一种制造工艺,使材料的制造过程比接收和退火状态下的损伤减少30%。该项目由工程局(ENG)的土木、机械和制造创新部门(CMMI)、数学和物理科学局(MPS)的材料研究部门(DMR)和数学科学部门(DMS)以及已建立的刺激竞争研究计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Pathak其他文献

Development and validation of a novel data analysis procedure for spherical nanoindentation
球形纳米压痕新型数据分析程序的开发和验证
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone
小鼠骨机械行为与成分之间的层状水平相关性
  • DOI:
    10.1007/s11837-021-04808-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Shraddha J. Vachhani;S. Kalidindi;Thomas Burr;Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Caught in the act: Grain-switching and quadrijunction formation in annealed aluminum
陷入困境:退火铝中的晶粒转换和四结形成
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak;R. Doherty;A. Rollett;J. Michler;K. Wasmer
  • 通讯作者:
    K. Wasmer
Time and frequency dependent mechanical properties of LaCoO3-based perovskites: Internal friction and negative creep
LaCoO3 基钙钛矿的时间和频率依赖性机械性能:内摩擦和负蠕变
  • DOI:
    10.1063/1.5037049
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Lugovy;N. Orlovskaya;Siddhartha Pathak;M. Radovic;E. Lara‐Curzio;D. Verbylo;J. Kuebler;T. Graule;M. Reece
  • 通讯作者:
    M. Reece
Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
表面处理对金属纳米压痕应力-应变曲线测量的重要性
  • DOI:
    10.1557/jmr.2009.0137
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Siddhartha Pathak;D. Stojakovic;R. Doherty;S. Kalidindi
  • 通讯作者:
    S. Kalidindi

Siddhartha Pathak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Pathak', 18)}}的其他基金

CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    2051443
  • 财政年份:
    2020
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    1929208
  • 财政年份:
    2020
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
  • 批准号:
    1937149
  • 财政年份:
    2019
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
EAGER: Engineering Metal-MAX Multilayered Nanocomposites: Hierarchical Microstructures for Tunable Strength and Toughness
EAGER:工程 Metal-MAX 多层纳米复合材料:可调节强度和韧性的分层微观结构
  • 批准号:
    1841331
  • 财政年份:
    2018
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了