A priori estimates, regularity, and asymptotics for nonlocal in time nonlinear partial differential equations

时间非局部非线性偏微分方程的先验估计、正则性和渐近性

基本信息

项目摘要

The precondition for a Heisenberg Programme funding is high scientific quality and originality of the research project at international level and suitability for further qualification as a university teacher. Applicants need to meet all the requirements for appointment to a permanent professorship.The aim of this programme is to enable outstanding scientists to prepare for a scientific leadership function, and simultaneously work on further research topics. This research does not necessarily need to be planned and carried out in the form of a project.For this reason, and unlike the procedure in other funding programmes, both the abstracts of applications and final reports are not required and will therefore not be published in GEPRIS.
海森堡方案资助的先决条件是国际上研究项目的高科学质量和原创性,以及是否适合进一步获得大学教师资格。申请者需要满足被任命为永久教授的所有要求。该计划的目的是使杰出的科学家能够为科学领导职能做准备,同时在进一步的研究课题上工作。这项研究不一定需要以项目的形式规划和进行,因此,与其他资助方案的程序不同,这项研究不需要申请摘要和最终报告,因此不会在GEPRIS中公布。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Decay Estimates for Time-Fractional and Other NonLocal Subdiffusion Equations via Energy Methods
  • DOI:
    10.1137/130941900
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vicente Vergara;Rico Zacher
  • 通讯作者:
    Vicente Vergara;Rico Zacher
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Rico Zacher其他文献

Professor Dr. Rico Zacher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Rico Zacher', 18)}}的其他基金

Li-Yau type differential Harnack inequalities and applications for nonlocal diffusion equations
Li-Yau型微分Harnack不等式及其非局部扩散方程的应用
  • 批准号:
    355354916
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stabilität von Ruhelagen des instationären Stefan-Problems mit Gibbs-Thomson-Gesetz und a-priori-Abschätzung für fraktionelle Evolutionsgleichungen
吉布斯-汤姆逊定律非定常 Stefan 问题静止位置的稳定性和分数阶演化方程的先验估计
  • 批准号:
    31476535
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

Restriction Estimates in the Absence of Regularity
缺乏规律性的限制估计
  • 批准号:
    535580-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Restriction Estimates in the Absence of Regularity
缺乏规律性的限制估计
  • 批准号:
    535580-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Restriction Estimates in the Absence of Regularity
缺乏规律性的限制估计
  • 批准号:
    535580-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
  • 批准号:
    1764248
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Monotonicity estimates and local regularity and singularity for the p-harmonic flows
p 谐波流的单调性估计以及局部规律性和奇异性
  • 批准号:
    15K04962
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Regularity estimates for elliptic and parabolic equations
职业:椭圆方程和抛物线方程的正则性估计
  • 批准号:
    1254332
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Size and Regularity Estimates for Solutions to Hyperbolic Equations
数学科学:双曲方程解的大小和规律性估计
  • 批准号:
    9401819
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Regularity Estimates for Solutions ofNonlinear Strictly Hyperbolic Equations
数学科学:非线性严格双曲方程解的正则估计
  • 批准号:
    8603158
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity and a Priori Estimates forSolutions of Elliptic Monge-Ampere Equations in Two Dimensions
数学科学:二维椭圆蒙日-安培方程解的正则性和先验估计
  • 批准号:
    8603619
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dispersive estimates for wave-type equations with low regularity coefficients (A13#)
低正则系数波动型方程的色散估计(A13
  • 批准号:
    462315506
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了