CAREER: Regularity estimates for elliptic and parabolic equations

职业:椭圆方程和抛物线方程的正则性估计

基本信息

  • 批准号:
    1254332
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-03-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

This mathematics research project is in the general area of partial differential equations. The focus is on the study of the regularity properties of elliptic and parabolic partial differential equations, and their connections with the well posedness of such problems; parts of the project concern non local diffusions. The partial differential equations investigated in this project arise from stochastic models dealing with discontinuous processes. A number of models from finance, physics, population dynamics, chemistry and biology involve non local diffusions. Another related direction of research concerns the interaction between local or non local diffusion with advection. There are a number of advection-diffusion models from physics that are not currently well understood mathematically. Typical examples of such phenomena arise in the study of equations that model fluids dynamics. The principal investigator Luis Silvestre will study estimates for advection-diffusion equations geared towards an improved understanding of the active scalar equations arising from models in fluid dynamics. Silvestre will also investigate a number of questions related to fully nonlinear elliptic partial differential equations that occur in the study of zero-sum stochastic games.This mathematics research projects studies the behavior of so-called non-local equations. Such equations arise in any physical model with long range interactions. They also arise naturally as the equations governing any probabilistic model whose values may take long jumps. A common example is the modeling of stock prices in financial mathematics, which could sporadically take sudden changes. Non local equations appear in myriad of models from physics, finance, social sciences and biology. Their applications may range from the valuation of financial options, to the effective computation of protein docking, which is useful in the design of medicinal drugs, and even in the modeling of the flight of birds. The development of a general theory of non local partial differential equations has seen great progress in recent years, which goes side to side with an increasing number of applications. The equations describing the dynamics of fluids present very difficult mathematical questions. Luis Silvestre (the principal investigator in this project) will also study certain diffusion equations, local and non local, in moving fluids. For the educational part of this proposal, Silvestre will organize summer schools, design an improved partial differential equations class for undergraduates, as well as teaching a graduate class; Silvestre will also organize conferences, and will mentor graduate students and postdoctoral fellows.
这个数学研究项目是在偏微分方程的一般领域。重点是研究椭圆和抛物型偏微分方程的正则性,以及它们与这些问题的适定性的联系;该项目的部分内容涉及非局部扩散。在这个项目中研究的偏微分方程产生于处理不连续过程的随机模型。许多来自金融、物理、种群动力学、化学和生物学的模型都涉及到非局部扩散。另一个相关的研究方向涉及本地或非本地扩散与平流之间的相互作用。有许多物理学中的对流扩散模型目前在数学上还没有得到很好的理解。这类现象的典型例子出现在对流体动力学模型方程的研究中。首席研究员路易斯·西尔维斯特将研究对流扩散方程的估计,以更好地理解流体动力学模型中产生的活动标量方程。西尔维斯特还将研究一些与零和随机博弈研究中出现的完全非线性椭圆偏微分方程相关的问题。这个数学研究项目研究所谓的非局部方程的行为。这样的方程出现在任何具有长程相互作用的物理模型中。它们也自然地出现在任何概率模型的方程中,这些模型的值可能会发生很大的跳跃。一个常见的例子是金融数学中的股票价格建模,它可能偶尔会发生突然的变化。非定域方程出现在物理学、金融学、社会科学和生物学的无数模型中。它们的应用范围可以从金融期权的估值,到蛋白质对接的有效计算,这在药物设计中很有用,甚至在鸟类飞行的建模中也很有用。非局部偏微分方程一般理论的发展近年来取得了很大的进展,其应用也越来越广泛。描述流体动力学的方程提出了非常困难的数学问题。Luis Silvestre(该项目的首席研究员)还将研究移动流体中的某些局部和非局部扩散方程。对于这项建议的教育部分,西尔维斯特将组织暑期学校,为本科生设计改进的偏微分方程课程,以及教授研究生课程;西尔维斯特还将组织会议,并将指导研究生和博士后研究员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis Silvestre其他文献

Understanding the design of software development teams for academic scenarios
了解学术场景软件开发团队的设计
Partial regularity of solutions of fully nonlinear, uniformly elliptic equations
全非线性一致椭圆方程解的部分正则性
The Landau equation does not blow up
朗道方程不会爆炸
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nestor Guillen;Luis Silvestre
  • 通讯作者:
    Luis Silvestre
A model-based tool for generating software process model tailoring transformations
用于生成软件流程模型定制转换的基于模型的工具
Automatic Generation of Transformations for Software Process Tailoring
自动生成软件流程定制的转换
  • DOI:
    10.1007/s11219-022-09585-2
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Luis Silvestre
  • 通讯作者:
    Luis Silvestre

Luis Silvestre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis Silvestre', 18)}}的其他基金

Diffusion in Kinetic Equations
动力学方程中的扩散
  • 批准号:
    2350263
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Diffusion and Regularity
扩散性和规律性
  • 批准号:
    2054888
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Regularization Properties of Nonstandard Diffusions
非标准扩散的正则化性质
  • 批准号:
    1764285
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
On regularity and singularity of solutions of some nonlinear elliptic equations
一些非线性椭圆方程解的正则性和奇异性
  • 批准号:
    1362525
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research : Emerging Issues in the Sciences Involving Non-Standard Diffusion
FRG:合作研究:涉及非标准扩散的科学中的新问题
  • 批准号:
    1065979
  • 财政年份:
    2011
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Nonlinear elliptic and parabolic equations with nonlocal effects
具有非局部效应的非线性椭圆和抛物线方程
  • 批准号:
    1001629
  • 财政年份:
    2010
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
  • 批准号:
    0901995
  • 财政年份:
    2008
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Issues in Nonlinear Elliptic Equations and Free Boundary Problems
非线性椭圆方程和自由边界问题中的问题
  • 批准号:
    0701016
  • 财政年份:
    2007
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

Restriction Estimates in the Absence of Regularity
缺乏规律性的限制估计
  • 批准号:
    535580-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Restriction Estimates in the Absence of Regularity
缺乏规律性的限制估计
  • 批准号:
    535580-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Restriction Estimates in the Absence of Regularity
缺乏规律性的限制估计
  • 批准号:
    535580-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
  • 批准号:
    1764248
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Monotonicity estimates and local regularity and singularity for the p-harmonic flows
p 谐波流的单调性估计以及局部规律性和奇异性
  • 批准号:
    15K04962
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A priori estimates, regularity, and asymptotics for nonlocal in time nonlinear partial differential equations
时间非局部非线性偏微分方程的先验估计、正则性和渐近性
  • 批准号:
    235869972
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Heisenberg Fellowships
Mathematical Sciences: Size and Regularity Estimates for Solutions to Hyperbolic Equations
数学科学:双曲方程解的大小和规律性估计
  • 批准号:
    9401819
  • 财政年份:
    1994
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Regularity Estimates for Solutions ofNonlinear Strictly Hyperbolic Equations
数学科学:非线性严格双曲方程解的正则估计
  • 批准号:
    8603158
  • 财政年份:
    1986
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity and a Priori Estimates forSolutions of Elliptic Monge-Ampere Equations in Two Dimensions
数学科学:二维椭圆蒙日-安培方程解的正则性和先验估计
  • 批准号:
    8603619
  • 财政年份:
    1986
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Dispersive estimates for wave-type equations with low regularity coefficients (A13#)
低正则系数波动型方程的色散估计(A13
  • 批准号:
    462315506
  • 财政年份:
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了